Novel 3D+ Multi-axial Preforms for Complex Loaded Composite Applications
适用于复杂负载复合材料应用的新型 3D 多轴预制件
基本信息
- 批准号:EP/X036804/1
- 负责人:
- 金额:$ 51.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Composite materials have seen significant growth in structural applications across multiple sectors due to the high strength and low weight, enabling fuel savings. This is considered a vital component on the journey to achieving Net Zero targets set by industry and governments. To achieve this goal, development of new composite materials is required to see greater adoption of composites to structures. A key area that offers potential for significant weight saving is complex loaded structural joints such as lugs that are used to connect structural components and transfer loads. One of the primary weaknesses facing traditional laminated composites in their attempt to replace metallics in this area is the lack of through thickness reinforcement, leading to delamination and premature failure.3D woven composites offer a desirable answer to these challenges through use of fibre in the primary xyz direction, with the "z" or binder fibre being able to carry load through the thickness and resist impact damage. Additional benefits for 3D weaving are the ability to create near net shape preforms and tailored properties. Despite the high potential benefits of 3D preforms, there are several challenges associated with it. The first is driven from the high bespoke nature of the material that creates several unknowns in how changes in the 3D architecture or weave parameters will affect the resulting composite properties. This has led to most 3D composites being manufactured in a uniform architecture and not utilising the full potential of the material. The second challenge is the absence of +/-45o or off-axis fibre that is necessary for complex loading conditions.This project aims to address this challenge through developing a new 3D+ material, by utilising the advantages of both technologies through the combination of 3D woven and 2D fibre preforming. The material will consist of a 3D woven core overlaid above and below with off-axis 2D fibre, creating a material that contains both through-thickness reinforcement and off-axis fibres necessary for complex loaded components. The 3D core will investigate the use of architecture transitions within the preform from an architecture tailored to maximise mechanical performance in the main lug body to an architecture tailored for high bearing response and delamination resistance around the lug hole. By utilising existing technologies, a high rate of production is possible with a reduced need for capital investment providing possible rapid and high impact solution for industry. This approach in material design goes against conventional methods of having a homogenised lay-up but generates a potential step change in composite design, a deeper understanding of 3D material, and potential application of composites to structures that have previously been inhibited by traditional lay-ups.
复合材料由于高强度和低重量而在多个部门的结构应用中显着增长,从而可以节省燃料。这被认为是实现行业和政府设定的净零目标旅程的重要组成部分。为了实现这一目标,需要开发新的复合材料才能看到更大的复合材料对结构的采用。具有大量节省重量的关键区域是复杂的负载结构接头,例如用于连接结构组件和传输负载的凸耳。传统层压复合材料试图在该领域取代金属的主要弱点之一是缺乏厚度增强,导致分层和过早失败。3D编织的复合材料通过在XYZ中使用XYZ中的纤维来为这些挑战提供了理想的答案,而XYZ的方向则可以通过“ Z”或binder Fails损坏损坏,或者可以通过厚度造成损坏并造成损坏。 3D编织的其他好处是能够创建近乎净形状预成型和量身定制的特性。尽管3D预成式具有很高的潜在好处,但与之相关的挑战存在一些挑战。第一个是从材料的高定制性质中驱动的,该材料的高定制性质在3D体系结构或编织参数如何影响所得的复合属性方面产生了几个未知数。这导致大多数3D复合材料都在统一的结构中生产,而不是利用材料的全部潜力。第二个挑战是对于复杂的负载条件所需的+/- 45O或离轴纤维的缺乏。本项目旨在通过开发新的3D +材料来解决这一挑战,通过利用两种技术的优势,通过3D编织和2D纤维预制的组合来解决这一挑战。该材料将由离轴2D纤维上方和下方覆盖的3D机芯组成,从而创建一种材料,其中包含厚度的增强和复杂负载组件所需的离轴纤维。 3D核心将调查从量身定制的建筑物内的建筑过渡的使用,以最大程度地提高主凸耳体的机械性能到量身定制的用于高轴承响应和凸耳孔周围的分层电阻的体系结构。通过利用现有技术,可以使用高生产率,而对资本投资的需求减少,为行业提供了可能的快速和高影响力解决方案。材料设计中的这种方法违反了具有同质化层次的常规方法,但在复合设计中产生了潜在的步骤变化,对3D材料的深入了解以及复合材料的潜在应用在以前被传统上层铺设抑制的结构中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Calvin Ralph其他文献
Calvin Ralph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Fast Multi-Functional 3D Imaging of Cellular Activities in Deep Tissue
深层组织细胞活动的快速多功能 3D 成像
- 批准号:
10861526 - 财政年份:2023
- 资助金额:
$ 51.45万 - 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 51.45万 - 项目类别:
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 51.45万 - 项目类别:
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 51.45万 - 项目类别:
Implantable 3D fluorescence imaging with high-speed, addressable laser scanning in moving mice
通过高速、可寻址激光扫描对移动小鼠进行植入式 3D 荧光成像
- 批准号:
10614795 - 财政年份:2023
- 资助金额:
$ 51.45万 - 项目类别: