Lifetime and encapsulation study of organic solar cells (LEOsc)

有机太阳能电池(LEOsc)的寿命和封装研究

基本信息

  • 批准号:
    EP/X036014/1
  • 负责人:
  • 金额:
    $ 64.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The Paris Agreement set the goal to reach Net-Zero emission by 2050 to tackle global warming; this has stimulated much research into energy transition. Photovoltaic technology receives great attention as it can meet increasing energy demands by converting solar radiation into electricity without greenhouse gas emissions. However, global PV deployment is still low (only 5% of global electricity came from PV technology in 2021) and the market is currently dominated by energy-intensive conventional crystalline silicon PV. To facilitate the energy transition, novel photovoltaic technologies, such as organic solar cells (OSCs), are being intensively studied for flexible & lightweight applications. However, OSCs must fulfil requirements in efficiency, lifetime, and cost for future commercialisation. The cost of OSC production and installation is expected to be very low compared to conventional Si. Continuing developments have been made in improving OSC efficiency and indeed competitive high PCE (power conversion efficiency) of about 20% has been reached so far. While OSC lifetime is still substantially lower than that of inorganic cells and there is much room for improvement. Since OSC degradation is mainly caused by exposure to moisture and oxygen, encapsulation of the cells is one of the most straightforward ways to improve OSC life expectancy. In this context, this Fellowship research focusses on the OSC lifetime study. The proposed tasks involve two aspects, encapsulation layer development and OSC extrinsic degradation mechanism study.Specifically, the atomic layer deposition (ALD) technique will be utilized for the fabrication of the encapsulation layer. ALD is a technique based on the self-limiting reaction between distinct precursors, which can deposit dense thin films with excellent uniformity. The uniformity of the film allows the water and oxygen permeation rate to be extremely low, thus the encapsulation film can protect OSCs longer. The Fellowship will systematically investigate all the encapsulation strategies by the ALD technique, namely: (1) Barrier films for lamination. This strategy allows the possibility of manufacturing the barrier films in advance, then OSCs will be laminated with barrier films. A huge advantage of this scheme is the whole processing of a module can be done in a roll-to-roll configuration and the ALD conditions are not limited by the sensitive organics. (2) Direct thin-film encapsulation (TFE). This strategy is desirable to minimize mechanical stress, abrasion to the barrier, and device contamination. The main issue of TFE is the encapsulation processing conditions are highly constrained by the organics. In both strategies, OSC encapsulation layers with low moisture permeation and sufficient mechanical durability will be developed, an intermediate layer will also be developed to serve as a better growth surface for ALD materials to ensure the thin films are perfect. The deposition rate will be improved to increase the production throughput of ALD. Comparisons of the encapsulation performance within the different strategies will address the best encapsulation configuration for OSCs. Thereafter, the optimal encapsulation will be utilised for the protection of state-of-the-art OSCs, accelerated tests and outdoor lifetime tests will be performed on the protected OSCs to characterise the lifetime. The extrinsic degradation of encapsulated cells will be also studied to address the cell break-down. Optimisation strategies will be given to the encapsulation layers according to the degradation mechanism. My goal is to push the lifetime of the OSC to a comparable level to that of Si. At the end of the Fellowship, scale-up trials will be undertaken with the help of Oxford Physics' Innovation and Enterprise Manager (Phillip Tait) and our industry partners.
《巴黎协定》设定了到2050年实现净零排放的目标,以应对全球变暖;这激发了对能源转型的大量研究。光伏技术受到高度关注,因为它可以通过将太阳辐射转化为电能而不排放温室气体来满足日益增长的能源需求。然而,全球光伏部署仍然较低(2021年全球仅有5%的电力来自光伏技术),且市场目前以能源密集型传统晶硅光伏为主。为了促进能源转型,人们正在深入研究新型光伏技术,例如有机太阳能电池(OSC),以实现灵活和轻量级的应用。然而,OSC 必须满足未来商业化的效率、寿命和成本要求。与传统硅相比,OSC 的生产和安装成本预计非常低。在提高 OSC 效率方面不断取得进展,实际上迄今为止已达到约 20% 的具有竞争力的高 PCE(功率转换效率)。虽然OSC的寿命仍然大大低于无机电池,并且还有很大的改进空间。由于 OSC 降解主要是由于暴露于水分和氧气而引起的,因此电池封装是提高 OSC 预期寿命的最直接方法之一。在此背景下,该奖学金研究的重点是 OSC 寿命研究。所提出的任务涉及封装层开发和OSC外在降解机制研究两个方面。具体来说,将利用原子层沉积(ALD)技术来制造封装层。 ALD 是一种基于不同前驱体之间自限反应的技术,可以沉积具有优异均匀性的致密薄膜。薄膜的均匀性使得水和氧的渗透率极低,因此封装膜可以更长时间地保护OSC。该奖学金将系统地研究 ALD 技术的所有封装策略,即: (1) 用于层压的阻隔膜。这种策略允许提前制造阻挡膜,然后将 OSC 与阻挡膜层压。该方案的一个巨大优势是模块的整个加工可以在卷对卷配置中完成,并且 ALD 条件不受敏感有机物的限制。 (2)直接薄膜封装(TFE)。该策略可最大程度地减少机械应力、屏障磨损和器件污染。 TFE 的主要问题是封装加工条件受到有机物的高度限制。在这两种策略中,都将开发具有低透湿性和足够机械耐久性的OSC封装层,还将开发中间层作为ALD材料更好的生长表面,以确保薄膜的完美。沉积速率将得到提高,以提高 ALD 的生产量。比较不同策略内的封装性能将确定 OSC 的最佳封装配置。此后,将采用最佳封装来保护最先进的OSC,并对受保护的OSC进行加速测试和户外寿命测试,以表征其寿命。还将研究封装细胞的外在降解,以解决细胞分解问题。根据退化机制对封装层给出优化策略。我的目标是将 OSC 的寿命提高到与 Si 相当的水平。在奖学金结束时,将在牛津物理学院创新和企业经理(Phillip Tait)和我们的行业合作伙伴的帮助下进行扩大试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanyuan Cao其他文献

Comparison of the supraglottic airway device BlockBusterTM and laryngeal mask airway Supreme in anaesthetised, paralyzed adult patients: a multicenter randomized controlled trial
声门上气道装置 BlockBusterTM 和喉罩气道 Supreme 在麻醉、瘫痪成人患者中的比较:一项多中心随机对照试验
  • DOI:
    10.1080/17434440.2022.2130048
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Xue Gao;Ju;Chun;Yong Wang;Zhong;Chun;M. Zuo;Yuanyuan Cao;Xin Qiao;Ya;Peijia Liu;Hui Zhang;Jiaqiang Zhang;Junmei Shen;Chao Li;Yi Wang;Yanyuan Sun;Jiali Song;Xizhe Zhang;Yunlong Zhang;Xiaomin Luo;Lu;Ye Zhang;Li Shi;Yuan Zhang;F. Xue;Ming Tian
  • 通讯作者:
    Ming Tian
Cheap and green deep eutectic solvents with favorable physical properties for significantly improved near-infrared light detection
廉价、绿色的深共熔溶剂,具有良好的物理特性,可显着改善近红外光检测
  • DOI:
    10.1016/j.molstruc.2021.130988
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuanyuan Cao;Jing Wang;Bo Jiang;Shuqin Jiang;Zhiwei Sun
  • 通讯作者:
    Zhiwei Sun
Chlorine geochemistry of various geothermal waters in China: Implications for geothermal system geneses
中国各种地热水的氯地球化学:对地热系统成因的启示
  • DOI:
    10.1016/j.jhydrol.2022.128783
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Mingliang Liu;Qinghai Guo;Hongjie Shi;Yuanyuan Cao;Jianbo Shang;Mengzhao Zhang
  • 通讯作者:
    Mengzhao Zhang
単色可視光照射によるサイズ選択的六角板銀ナノ粒子の形成‐光励起場を利用した金属ナノ粒子の形態制御に向けて
通过单色可见光照射选择性形成六角板银纳米颗粒 - 利用光激发场实现金属纳米颗粒的形貌控制
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liguo Ma;Yingying Duan;Yuanyuan Cao;Shunsuke Asahina;Zheng Liu and Shunai Che;谷本久典
  • 通讯作者:
    谷本久典
The National Diabetes Education Program.
国家糖尿病教育计划。
  • DOI:
    10.1097/01.naj.0000408193.98005.2b
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Ponson;Yuanyuan Cao;E. Bouchaud;V. Tvergaard;A. Needleman
  • 通讯作者:
    A. Needleman

Yuanyuan Cao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

主动冷却用分子筛外延晶粒封装Pt-CeOx的构筑及催化环烷烃脱氢性能
  • 批准号:
    22308257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分子筛封装的Pt-M双金属蜂窝整体式结构化催化剂的构建及其氢化硝基苯的催化性能研究
  • 批准号:
    22308009
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
普适性细胞膜定向封装仿生纳米前药增效靶向抗动脉粥样硬化的研究
  • 批准号:
    52303146
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MOFs的合理封装对载流子迁移的调控及其高效光催化全分解水研究
  • 批准号:
    52302311
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用等离子增强型分子层沉积技术实现0.5mm弯折挠度半径的超柔性薄膜封装技术研究
  • 批准号:
    62374070
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Islet encapsulation to elicit localized immunosuppression and immune modulation following transplantation
移植后胰岛封装引发局部免疫抑制和免疫调节
  • 批准号:
    10667778
  • 财政年份:
    2023
  • 资助金额:
    $ 64.93万
  • 项目类别:
Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
  • 批准号:
    10419416
  • 财政年份:
    2022
  • 资助金额:
    $ 64.93万
  • 项目类别:
Improving Fragment Based Drug Discovery and the Development of Tools for Chemical Biology through Nanoscale Encapsulation and NMR Spectroscopy
通过纳米级封装和核磁共振波谱改善基于片段的药物发现和化学生物学工具的开发
  • 批准号:
    10707914
  • 财政年份:
    2022
  • 资助金额:
    $ 64.93万
  • 项目类别:
Enhancing transport and delivery of ferrihydrite nanoparticles via polymer encapsulation in PFAS-contaminated sediments to simulate PFAS defluorination by Acidimicrobium sp. Strain A6
通过聚合物封装在 PFAS 污染的沉积物中增强水铁矿纳米粒子的运输和递送,以模拟 Acidimicrobium sp 的 PFAS 脱氟。
  • 批准号:
    10515660
  • 财政年份:
    2021
  • 资助金额:
    $ 64.93万
  • 项目类别:
A universal multi-drug encapsulation and delivery system employing supramolecular nanogels that self-assemble via dynamic sulfone bonding
一种通用的多药物封装和递送系统,采用通过动态砜键自组装的超分子纳米凝胶
  • 批准号:
    10626132
  • 财政年份:
    2021
  • 资助金额:
    $ 64.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了