KUber: Knowledge Delivery System For Machine Learning At Scale
KUber:大规模机器学习的知识传递系统
基本信息
- 批准号:EP/X035085/1
- 负责人:
- 金额:$ 66.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
AI/ML systems are becoming an integral part of user products and applications as well as the main revenue driver for most organizations. This resulted in shifting the focus toward the Edge AI paradigm as edge devices possess the data necessary for training the models. Main Edge AI approaches either coordinate the training rounds and exchange model updates via a central server (i.e., Federated Learning), split the model training task between edge devices and a server (i.e., split Learning), or coordinate the model exchange among the edge devices via gossip protocols (i.e., decentralized training). Due to the highly heterogeneous learners, configurations, environment as well as significant synchronization challenges, these approaches are ill-suited for distributed edge learning at scale. They fail to scale with a large number of learners and produce models with low qualities at prolonged training times. It is imperative for modern applications to rely on a system providing timely and accurate models. This project addresses this gap by proposing a ground-up transformation to decentralized learning methods. Similar to Uber's delivery services, the goal of KUber is to build a novel distributed architecture to facilitate the exchange and delivery of acquired knowledge among the learning entities. In particular, we seize an opportunity to decouple the training task of a common model from the sharing task of learned knowledge. This is made possible by the advances in the AI/ML accelerators embedded in edge devices and the high-throughput and low-latency 5G/6G technologies. KUber will revolutionize the use of AI/ML methods in daily-life applications and open the door for flexible, scalable, and efficient collaborative learning between users, organizations, and governments.
AI/ML系统正在成为用户产品和应用程序的组成部分,以及大多数组织的主要收入驱动力。这导致将焦点转移到边缘AI范式上,因为边缘设备具有训练模型所需的数据。 Main Edge AI接近通过中央服务器(即联合学习)来协调训练回合和交换模型更新,在边缘设备和服务器之间将模型培训任务分开(即拆分学习),或者通过八卦设备之间的模型交换(即,即处于分发的培训)。由于高度异质的学习者,配置,环境以及重大同步挑战,这些方法不适合按大规模分布式边缘学习。他们无法与大量的学习者进行扩展,并在长时间的培训时间生产具有低品质的模型。现代应用程序必须依靠提供及时,准确的模型的系统。该项目通过提出对分散学习方法的基础转变来解决这一差距。与Uber的交付服务类似,Kuber的目标是建立一种新颖的分布式体系结构,以促进学习实体之间获得的知识的交流和交付。特别是,我们抓住机会将通用模型的培训任务与学习知识的共享任务中。通过嵌入边缘设备以及高通量和低延迟5G/6G技术的AI/ML加速器的进步,这是可能的。 Kuber将彻底改变在日常生活应用中使用AI/ML方法,并为用户,组织和政府之间的灵活,可扩展和有效的协作学习打开大门。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Mohamed Abdelmoniem Sayed其他文献
Ahmed Mohamed Abdelmoniem Sayed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向微服务架构软件的知识制导自适应机制研究
- 批准号:62372351
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向边缘智能的知识图谱构建关键技术研究
- 批准号:62306087
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
顾及古建知识的古建点云部构件级三维实体建模研究
- 批准号:42301516
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向大规模图预训练模型的知识迁移关键问题研究
- 批准号:62376129
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
知识与数据混合驱动的含缺陷点阵结构不确定性分析与优化方法研究
- 批准号:12302149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
- 批准号:
480808 - 财政年份:2023
- 资助金额:
$ 66.61万 - 项目类别:
Miscellaneous Programs
Evaluating Policy Solutions Aimed at Improving Hospice Care Access in Rural Areas
评估旨在改善农村地区临终关怀服务的政策解决方案
- 批准号:
10555012 - 财政年份:2023
- 资助金额:
$ 66.61万 - 项目类别:
Examining the multilevel factors on quality of end-of-life care among cancer patients in Puerto Rico
检查影响波多黎各癌症患者临终关怀质量的多层次因素
- 批准号:
10557584 - 财政年份:2023
- 资助金额:
$ 66.61万 - 项目类别:
Increasing access to cancer trials in Minnesota (InACT-MN)
增加明尼苏达州癌症试验的机会 (InACT-MN)
- 批准号:
10636408 - 财政年份:2023
- 资助金额:
$ 66.61万 - 项目类别:
Development of a Dedicated Fluidjet Technology for Single-session Debridement of Necrotizing Pancreatitis
开发用于坏死性胰腺炎单次清创的专用流体喷射技术
- 批准号:
10699626 - 财政年份:2023
- 资助金额:
$ 66.61万 - 项目类别: