Automatic Control Engineering (ACE) Network
自动控制工程(ACE)网络
基本信息
- 批准号:EP/X031470/1
- 负责人:
- 金额:$ 72.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
We are increasingly dependent on complex "smart" systems: cities, houses, vehicles, electricity grids and a myriad of connected 'things' gathering information and performing automated decision-making with or without a human in the loop. This is in part possible because of technological advances in sensing, actuation, computer hardware, networking and communication, which enable the harnessing, processing and analysis of vast volumes of data. Major advances in Automatic Control Engineering have provided the underpinning theory, methodology and practice needed to design and implement highly complex control and decision-making systems. Automatic control engineering continues to play a vital role in realising the government's long-term industrial strategy of raising productivity and earning power within the UK. Specifically, automatic control is a key enabling technology for all four major societal challenge themes identified in the 2017 UK Industrial Strategy: AI and Data, Clean Growth, Future Mobility and Aging Society and the specific challenge areas within each theme.Automatic control not only dramatically improves the productivity, efficiency, reliability and safety of a wide range of processes across all sectors, but also provides fundamental theory, methodologies and tools to further the understanding and enable discovery in other disciplines such as biology, medicine and social sciences. Whilst the UK led the First Industrial Revolution through the adoption of new technologies, including automation and control, today it lags behind its international competitors. This is evidenced in part by the slow productivity growth over the past decade, which is in sharp contrast to other economic indicators. It is argued that if the UK does not make a concerted effort to transition towards automation, it will miss a pivotal opportunity for growth, estimated to be worth more than £200 billion to the UK economy by 2030.For the UK to become a global leader in intelligent automation and leapfrog international competitors, it is vital that it consolidates its research leadership in automatic control engineering. The UK has a strong control engineering community of well over 1000 active researchers, and engineering practitioners spanning all career stages, which are represented at an international level by the UK Automatic Control Council (UKACC), the United Kingdom's National Member Organisation (NMO) of the International Federation of Automatic Control (IFAC), acting as an effective link between the UK and the international control communities. At the time of dramatic advances in automation, AI, sensing and computation technologies, in order to engage effectively with the UK Grand Challenge research agenda, avoid fragmentation of effort and to ensure control engineers are engaged from the outset with end-users or initiatives, there is a need for the UK control community to connect effectively with other academic and industry stakeholders, to develop a common research vision and strategy and to start addressing these challenges through ambitious pilot studies, paving the way for full-scale, high-impact grant proposals, novel groundbreaking research and knowledge transfer projects. The Automatic Control Engineering Network aims to drive forward the UK's research and international leadership in next-generation automation and control, by bringing together and connecting the country's expertise in automation, the internet-of-things, cybersecurity, machine learning and robotics, with industry stakeholders and the wider research communities working towards addressing the same pressing societal challenges. Through the creation of a Virtual Centre of Excellence in Automation and Control, the Network will ensure that the coordination of research efforts, industry engagement, training activities and resource sharing needed to address Grand Challenges, will continue beyond the end of the funding period.
我们越来越依赖复杂的“智能”系统:城市,房屋,车辆,电网以及无数连接的“事物”收集信息,并在循环中使用或没有人进行自动决策。这在某种程度上是可能的,这是由于技术进步,操作,计算机硬件,网络和通信的进步,这可以实现大量数据的利用,处理和分析。自动控制工程的重大进展提供了设计和实施高度复杂的控制和决策系统所需的基础理论,方法和实践。自动控制工程在实现政府在英国境内提高生产力和赚钱能力的长期工业战略方面继续发挥至关重要的作用。具体而言,自动控制是对所有四个主要社会挑战主题的关键,在2017年英国工业策略中确定的所有四个主要社会挑战主题:AI和数据,清洁增长,未来的流动性和衰老社会以及每个主题内的特定挑战领域,自动控制不仅会极大地提高生产力,效率,效率,效率,效率和范围的广泛范围,还提供了跨越基础的工具,并能够进一步确定基础理论,方法是基础的理论。例如生物学,医学和社会科学。尽管英国通过采用新技术(包括自动化和控制)领导了第一次工业革命,但如今,它落后于国际竞争对手。在过去的十年中,生产率的增长缓慢,这与其他经济指标形成了鲜明对比,这证明了这一点。有人认为,如果英国没有为自动化过渡而进行一致的努力,它将错过一个关键的增长机会,到2030年,英国对英国经济的估计超过2000亿英镑。英国成为智能自动化和Leapfrog International竞争者的全球领导者,它在自动控制机构中的研究很重要。英国拥有一个强大的控制工程社区,拥有超过1000名活跃研究人员,以及跨越所有职业阶段的工程从业人员,由英国自动控制委员会(UKACC),英国国际自动控制联合会(IFAC)的国际自动控制委员会(UKACC)在国际层面上代表,这是UK与国际控制社区之间的有效联系。在自动化的巨大进步时,AI,敏感性和计算技术为了与英国大挑战赛研究议程有效互动,避免努力分散,并确保控制工程师从最终用户或倡议中从一开始就可以与其他学术和行业进行挑战,并与他们建立挑战,并建立策略,并建立了策略,并建立了策略,并建立了策略,并建立了策略,并建立了策略,并建立了策略,并建立了这些策略,并将其挑战与这些策略相连研究,为全尺度,高影响力的赠款提案,新颖的开创性研究和知识转移项目的道路粘贴道路。自动控制工程网络旨在通过将国家的自动化,网络网络,网络安全,机器学习和机器人技术联系在一起,与行业利益相关者以及为解决同一紧迫的社会挑战所致力于解决同样的社会挑战的广泛研究社区,通过将英国的研究和国际领导力推向下一代自动化和控制方面的国际领导。通过建立虚拟的自动化和控制卓越中心,该网络将确保研究工作,行业参与,培训活动和资源共享的协调,以应对巨大的挑战,将持续到资金期末。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Coca其他文献
A Novel Architecture - Switching Echo State Networks
一种新颖的架构 - 切换回声状态网络
- DOI:
10.1109/aqtr61889.2024.10554207 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
C. A. Lupascu;Daniel Coca;O. Pastravanu - 通讯作者:
O. Pastravanu
Internal Optimal Controller Synthesis for Navier–Stokes Equations
纳维-斯托克斯方程的内部最优控制器综合
- DOI:
10.1080/01630560701872458 - 发表时间:
2008 - 期刊:
- 影响因子:1.2
- 作者:
Yubin Yan;Daniel Coca;V. Barbu - 通讯作者:
V. Barbu
Solving the inverse Frobenius-Perron problem using stationary densities of dynamical systems with input perturbations
- DOI:
10.1016/j.cnsns.2020.105302 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:
- 作者:
Xiaokai Nie;Daniel Coca;Jingjing Luo;Mark Birkin - 通讯作者:
Mark Birkin
Daniel Coca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Coca', 18)}}的其他基金
Reverse-engineering Drosophila's retinal networks
对果蝇视网膜网络进行逆向工程
- 批准号:
BB/H013849/1 - 财政年份:2010
- 资助金额:
$ 72.38万 - 项目类别:
Research Grant
Stem Cell Dynamics: Exploration of the Stem Cell attractor Landscape
干细胞动力学:干细胞吸引子景观的探索
- 批准号:
G0802627/1 - 财政年份:2009
- 资助金额:
$ 72.38万 - 项目类别:
Research Grant
FPGA supercomputing technology for high-throughput identification and quantitation in proteomics
用于蛋白质组学高通量识别和定量的 FPGA 超级计算技术
- 批准号:
BB/F004893/1 - 财政年份:2008
- 资助金额:
$ 72.38万 - 项目类别:
Research Grant
Hardware accelerated data processing pipeline for proteomics
用于蛋白质组学的硬件加速数据处理流程
- 批准号:
BB/F52809X/1 - 财政年份:2007
- 资助金额:
$ 72.38万 - 项目类别:
Research Grant
相似国自然基金
晶面诱导工程同步调控光生电荷分离与利用的水污染控制新技术
- 批准号:52300069
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肿瘤微环境乳酸控制的纳米杂合工程菌精准指导CD47纳米抗体用于结肠癌免疫治疗研究
- 批准号:32301187
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于掺杂工程调控Ziegler-Natta催化剂中MgCl2载体微环境及其催化乙烯聚合性能研究
- 批准号:22368033
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
基于预设轨迹约束的海上风电工程船智能控制理论方法
- 批准号:52301417
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
强震作用下巨型堆积体边坡的灾变演化与工程控制
- 批准号:52379100
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Self-adaptive and Cooperative Multi-agent Reinforcement Learning-based Network Traffic Control
基于强化学习的自适应协作多智能体网络流量控制
- 批准号:
23K19982 - 财政年份:2023
- 资助金额:
$ 72.38万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A Human-Mimetic AI System for Automatic, Passive and Objective Dietary Assessment
用于自动、被动和客观饮食评估的仿人人工智能系统
- 批准号:
10320465 - 财政年份:2021
- 资助金额:
$ 72.38万 - 项目类别:
Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台
- 批准号:
10321002 - 财政年份:2020
- 资助金额:
$ 72.38万 - 项目类别:
Rolosense: An innovative platform for automatic mobile phone readout of active SARS-CoV-2 particles
Rolosense:用于自动手机读取活性 SARS-CoV-2 颗粒的创新平台
- 批准号:
10264612 - 财政年份:2020
- 资助金额:
$ 72.38万 - 项目类别:
DNA Repair-on-a-Chip: Spatially Encoded Microwell Arrays
DNA 芯片修复:空间编码微孔阵列
- 批准号:
8743205 - 财政年份:2011
- 资助金额:
$ 72.38万 - 项目类别: