UHP.RTYF.Geo-Crete: Eco-Innovation: Development of Sustainable and Affordable Ultra High Performance Geopolymer Concrete for Industrial Floor Applicat
UHP.RTYF.Geo-Crete:生态创新:开发可持续且经济实惠的工业地坪应用超高性能地聚合物混凝土
基本信息
- 批准号:EP/X021270/1
- 负责人:
- 金额:$ 24.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The drying shrinkage and the concrete spalling during the catastrophic fire can lead to serviceability and the structural failures, in particular, for ultra-high performance concrete (UHPC). UHPC is a new and versatile concrete, yet, its extensive application is hindered by high materials cost and high adverse impact on environments. The key objectives of the proposed project are to develop novel, innovative, crack-resistant, fire-resistant, low-cost, user and eco-friendly, lower energy, low carbon footprint, sustainable and durable Ultra High Performance GeoPolymer Concrete (UHPGPC) using Recycled Steel Fibres derived from waste Tyres (RTSF) and Recycled Aggregates (RA). This will lead to "UHP.RTYF.Geo-Crete" which can be used as slabs on grade for the large industrial floors and tunnels amongst other applications. This project will investigate the shrinkage cracking and the fire-induced spalling mechanisms, the fibre-matrix compatibility, durability, thermal, physical, mechanical, and the micro-structural properties through the multidisciplinary investigations including, FTIR, SEM-EDS, TGA-DTA, XRD, MIP and X ray CT scanning. Also, it will deal with the present challenges of UHPC viz., higher materials cost; CO2 emissions; depletion of restricted natural aggregate resources; pollution of environment, soil, surface and sub-surface water as well as health hazards associated with the unsystematic disposal of discarded tyres, industrial wastes and Construction & Demolition Wastes (CDW). The University of Sheffield, U.K. is world leading in Fibre Reinforced Concrete (FRC) design and re-using wastes in concrete. It will also offer a broad and comprehensive training to the fellow in order to establish her as an independent researcher.
灾难性火灾期间的干燥收缩和混凝土剥落可能会导致可用性和结构故障,特别是对于超高性能混凝土(UHPC)而言。 UHPC是一种新型多功能混凝土,但材料成本高、对环境影响大,阻碍了其广泛应用。该项目的主要目标是开发新颖、创新、抗裂、耐火、低成本、用户和环境友好、低能耗、低碳足迹、可持续和耐用的超高性能土工聚合物混凝土(UHPGPC)使用从废轮胎 (RTSF) 和再生骨料 (RA) 中提取的再生钢纤维。这将产生“UHP.RTYF.Geo-Crete”,它可以用作大型工业地板和隧道等应用的地面板。该项目将通过 FTIR、SEM-EDS、TGA-DTA 等多学科研究,研究收缩开裂和火灾引起的剥落机制、纤维基体相容性、耐久性、热、物理、机械和微观结构性能、X射线衍射、MIP和X射线CT扫描。此外,它将应对UHPC目前的挑战,即材料成本较高;二氧化碳排放量;有限的自然总资源的枯竭;环境、土壤、地表水和地下水的污染以及与废弃轮胎、工业废物和建筑和拆除废物(CDW)的不系统处理相关的健康危害。英国谢菲尔德大学在纤维增强混凝土 (FRC) 设计和混凝土废料再利用方面处于世界领先地位。它还将为该研究员提供广泛而全面的培训,以使她成为一名独立研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maurizio Guadagnini其他文献
Maurizio Guadagnini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Conference: INTERNATIONAL SUMMER SCHOOL ON DATA SCIENCE AND ENGINEERING IN HEALTHCARE, MEDICINE AND BIOLOGY, JUNE 4 -10, 2023, CRETE, GREECE:
会议:国际医疗保健、医学和生物学数据科学与工程暑期学校,2023 年 6 月 4 日至 10 日,希腊克里特岛:
- 批准号:
2323134 - 财政年份:2023
- 资助金额:
$ 24.26万 - 项目类别:
Standard Grant
Het-Crete: High-Grade Chemical-Treated Heterogeneous Recycled Concrete
Het-Crete:高级化学处理的异质再生混凝土
- 批准号:
FT220100017 - 财政年份:2023
- 资助金额:
$ 24.26万 - 项目类别:
ARC Future Fellowships
cdG Signaling and Adhesion Deployment During Biofilm Initiation
生物膜启动期间的 cdG 信号传导和粘附部署
- 批准号:
10417364 - 财政年份:2022
- 资助金额:
$ 24.26万 - 项目类别:
Utilizing biodegradable porous silicon membranes as a novel design for lung-on-a-chip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
- 批准号:
10400222 - 财政年份:2021
- 资助金额:
$ 24.26万 - 项目类别:
Utilizing biodegradable porous silicon membranes as a novel design for lung-on-achip microfluidic devices to investigate extracellular matrix interactions.
利用可生物降解的多孔硅膜作为片上肺微流体装置的新颖设计来研究细胞外基质相互作用。
- 批准号:
10553441 - 财政年份:2021
- 资助金额:
$ 24.26万 - 项目类别: