Integrating membrane processes into hydroponics systems to promote plant growth, recover added-value root exudates and recycle nutrients
将膜工艺集成到水培系统中,以促进植物生长、回收增值根系分泌物并回收养分
基本信息
- 批准号:EP/X018660/1
- 负责人:
- 金额:$ 25.63万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hydroponics are controlled soilless agricultural systems that enable crops to be grown out of season on land otherwise poorly suited for crop production. In 2015, hydroponic farming was estimated to be worth $21.4 billion, with an expected annual growth of 7%. Hydroponic farms have several advantages over traditional farming, including 3 to 10 times more plant production per unit space, and up to 90% more efficient use of water in well-managed farms. Many horticultural crops are routinely grown in commercial vertical hydroponic farms because of the high quality and yields these systems provide. However, plants in hydroponic culture exude high amounts of phytochemicals into the nutrient solution. Continuous recycling of nutrient solutions in closed hydroponic systems causes these phytochemicals to accumulate, leading to autotoxicity. Replacing the nutrient solution is typical, but is costly, labour-intensive, inefficient and causes system downtime.In contrast, phytochemicals extracted from plant wastes are increasingly finding a range of technological applications, offering additional revenue within a circular economy. Plants exude many metabolites from their roots, such as polyphenols, which have antioxidant properties that promote human health, along with molecules that have roles in regulating plant growth and development, and in plant-microbe interactions. Root exudates are therefore a potential source of novel activities for use as plant biostimulants or plant protection products.This project seeks to use hydroponic cultivation of pea shoots as a model system to solve autotoxicity problems and allow nutrient recycling, whilst simultaneously exploiting efficient membrane separation to recover organic molecules from root exudates and evaluate their properties. To achieve this, two parallel approaches will be followed to minimise the negative effects of phytotoxic exudates. First, we will seek to optimise the growth environment (recirculation flow, temperature, etc.) to understand how hydroponic culture conditions influence the production of phytotoxins. Secondly, we will try to establish a semi-pilot scale membrane filtration process within a hydroponic system to continuously remove exudates. Since root exudates may contain valuable compounds (e.g. in human/animal nutrition) or can be screened for novel activities (e.g. as plant biostimulants or antimicrobial agents), such integrated filtration provides additional opportunities to exploit the fractionated phytochemicals. The proposal is multidisciplinary and involves groups of various complementary backgrounds. In particular, the project involves chemical/bio-process engineering (nutrient composition and/or flow rates to facilitate the production and recovery of exudates), membrane science (use of appropriate membranes), analytical chemistry (use appropriate methodologies to characterise the composition of the exudates), and plant physiology (assessing plant growth and in-vitro and in-vivo bioassays to identify novel applications of exudates). If successful, this innovative project could revolutionise hydroponic culture systems. Our results will provide evidence for the technological feasibility of using merged systems for future soilless plant growth and chemical-producing farms. When developed further, our ideas will contribute towards establishing next generation biorefinery principles, able to isolate valuable chemicals from the plant root system while producing more crop biomass. In summary, we propose a highly innovative, but relatively simple, chemical-free and scalable process to stimulate the production and recovery of compounds from hydroponic exudates. This will maximize plant growth and resolve an existing commercial problem of autotoxicity in such systems, whilst simultaneously introducing the potential for new revenue routes for hydroponic farming.
水培法是受控的无土农业系统,使作物能够在不适合作物生产的土地上反季节种植。 2015年,水培农业价值估计为214亿美元,预计年增长率为7%。与传统农业相比,水培农场具有多项优势,包括每单位空间的植物产量高出 3 至 10 倍,管理良好的农场的用水效率高达 90%。由于这些系统提供的高质量和高产量,许多园艺作物通常在商业垂直水培农场中种植。然而,水培植物会向营养液中渗出大量植物化学物质。在封闭的水培系统中连续回收营养液会导致这些植物化学物质积累,导致自毒性。更换营养液是一种常见的做法,但成本高昂、劳动力密集、效率低下,还会导致系统停机。相比之下,从植物废物中提取的植物化学物质越来越多地找到一系列技术应用,在循环经济中提供额外收入。植物从根部分泌出许多代谢物,例如具有促进人类健康的抗氧化特性的多酚,以及在调节植物生长和发育以及植物与微生物相互作用中发挥作用的分子。因此,根系分泌物是用作植物生物刺激剂或植物保护产品的新活性的潜在来源。该项目寻求使用豌豆芽的水培作为模型系统来解决自毒性问题并允许养分回收,同时利用有效的膜分离来从根系分泌物中回收有机分子并评估其特性。为了实现这一目标,将采用两种并行方法来最大限度地减少植物毒性渗出物的负面影响。首先,我们将寻求优化生长环境(再循环流量、温度等),以了解水培条件如何影响植物毒素的产生。其次,我们将尝试在水培系统内建立半中试规模的膜过滤工艺,以持续去除渗出物。由于根系分泌物可能含有有价值的化合物(例如在人类/动物营养中)或可以筛选新活性(例如作为植物生物刺激剂或抗菌剂),因此这种集成过滤为利用分级植物化学物质提供了额外的机会。该提案是多学科的,涉及具有不同互补背景的群体。特别是,该项目涉及化学/生物过程工程(营养成分和/或流速以促进渗出物的产生和回收)、膜科学(使用适当的膜)、分析化学(使用适当的方法来表征渗出物的成分)渗出物)和植物生理学(评估植物生长以及体外和体内生物测定,以确定渗出物的新应用)。如果成功,这个创新项目可能会彻底改变水培系统。我们的研究结果将为未来无土植物生长和化学品生产农场使用合并系统的技术可行性提供证据。当进一步发展时,我们的想法将有助于建立下一代生物炼制原理,能够从植物根系中分离出有价值的化学物质,同时产生更多的作物生物质。总之,我们提出了一种高度创新但相对简单、不含化学品且可扩展的工艺来刺激水培渗出液中化合物的生产和回收。这将最大限度地提高植物生长并解决此类系统中现有的自毒性商业问题,同时为水培农业带来新的收入途径的潜力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emmanouil Papaioannou其他文献
Emmanouil Papaioannou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emmanouil Papaioannou', 18)}}的其他基金
Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
- 批准号:
EP/Y032004/1 - 财政年份:2024
- 资助金额:
$ 25.63万 - 项目类别:
Research Grant
Bio-GENTLE Green membrane bioseparation for circular economy
Bio-GENTLE 绿色膜生物分离促进循环经济
- 批准号:
EP/Y031997/1 - 财政年份:2024
- 资助金额:
$ 25.63万 - 项目类别:
Research Grant
相似国自然基金
构建从隔膜延伸到催化层的聚苯并咪唑交联网络用于高温质子交换膜燃料电池的研究
- 批准号:22309117
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
流动乳品体系中嗜热混合菌生物被膜的形成过程及机制研究
- 批准号:32302027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
弓形虫感染对蜕膜NK细胞表面Lag-3的影响及进而导致其母胎耐受功能紊乱的分子机制研究
- 批准号:32302903
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自具微孔聚苯并咪唑高温质子交换膜制备及性能研究
- 批准号:22305259
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高效稳定的多孔配位聚合物膜的研制及电合成过氧化氢
- 批准号:22375223
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
曲がった薄膜領域上のネマティック液晶の方程式の数学解析
弯曲薄膜区域向列液晶方程的数学分析
- 批准号:
23K12993 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Probing SNARE assembly and disassembly in vitro and in live cells
在体外和活细胞中探测 SNARE 组装和拆卸
- 批准号:
10679644 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Synthetic circuits for therapeutic platelet production and immunomodulation
用于治疗性血小板生成和免疫调节的合成回路
- 批准号:
10745237 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别:
Sensory Ion Channel Modulation by Bioactive Lipids
生物活性脂质对感觉离子通道的调节
- 批准号:
10622095 - 财政年份:2023
- 资助金额:
$ 25.63万 - 项目类别: