Integrating membrane processes into hydroponics systems to promote plant growth, recover added-value root exudates and recycle nutrients

将膜工艺集成到水培系统中,以促进植物生长、回收增值根系分泌物并回收养分

基本信息

  • 批准号:
    EP/X018660/1
  • 负责人:
  • 金额:
    $ 25.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Hydroponics are controlled soilless agricultural systems that enable crops to be grown out of season on land otherwise poorly suited for crop production. In 2015, hydroponic farming was estimated to be worth $21.4 billion, with an expected annual growth of 7%. Hydroponic farms have several advantages over traditional farming, including 3 to 10 times more plant production per unit space, and up to 90% more efficient use of water in well-managed farms. Many horticultural crops are routinely grown in commercial vertical hydroponic farms because of the high quality and yields these systems provide. However, plants in hydroponic culture exude high amounts of phytochemicals into the nutrient solution. Continuous recycling of nutrient solutions in closed hydroponic systems causes these phytochemicals to accumulate, leading to autotoxicity. Replacing the nutrient solution is typical, but is costly, labour-intensive, inefficient and causes system downtime.In contrast, phytochemicals extracted from plant wastes are increasingly finding a range of technological applications, offering additional revenue within a circular economy. Plants exude many metabolites from their roots, such as polyphenols, which have antioxidant properties that promote human health, along with molecules that have roles in regulating plant growth and development, and in plant-microbe interactions. Root exudates are therefore a potential source of novel activities for use as plant biostimulants or plant protection products.This project seeks to use hydroponic cultivation of pea shoots as a model system to solve autotoxicity problems and allow nutrient recycling, whilst simultaneously exploiting efficient membrane separation to recover organic molecules from root exudates and evaluate their properties. To achieve this, two parallel approaches will be followed to minimise the negative effects of phytotoxic exudates. First, we will seek to optimise the growth environment (recirculation flow, temperature, etc.) to understand how hydroponic culture conditions influence the production of phytotoxins. Secondly, we will try to establish a semi-pilot scale membrane filtration process within a hydroponic system to continuously remove exudates. Since root exudates may contain valuable compounds (e.g. in human/animal nutrition) or can be screened for novel activities (e.g. as plant biostimulants or antimicrobial agents), such integrated filtration provides additional opportunities to exploit the fractionated phytochemicals. The proposal is multidisciplinary and involves groups of various complementary backgrounds. In particular, the project involves chemical/bio-process engineering (nutrient composition and/or flow rates to facilitate the production and recovery of exudates), membrane science (use of appropriate membranes), analytical chemistry (use appropriate methodologies to characterise the composition of the exudates), and plant physiology (assessing plant growth and in-vitro and in-vivo bioassays to identify novel applications of exudates). If successful, this innovative project could revolutionise hydroponic culture systems. Our results will provide evidence for the technological feasibility of using merged systems for future soilless plant growth and chemical-producing farms. When developed further, our ideas will contribute towards establishing next generation biorefinery principles, able to isolate valuable chemicals from the plant root system while producing more crop biomass. In summary, we propose a highly innovative, but relatively simple, chemical-free and scalable process to stimulate the production and recovery of compounds from hydroponic exudates. This will maximize plant growth and resolve an existing commercial problem of autotoxicity in such systems, whilst simultaneously introducing the potential for new revenue routes for hydroponic farming.
水培法是控制的土豆性农业系统,使农作物在土地上的季节种植,否则不适合作物生产。 2015年,水培农业估计价值214亿美元,预计年增长7%。与传统农业相比,水培农场具有多个优势,包括每单位空间的植物生产增加3至10倍,并且在管理良好的农场中使用水的效率高达90%。许多园艺作物经常在商业垂直水培农场中种植,因为这些系统提供了这些系统。然而,水培培养物中的植物将大量的植物化学物质散发到营养溶液中。封闭水培系统中营养溶液的连续回收导致这些植物化学物质积累,从而导致自毒性。替换营养解决方案是典型的,但昂贵,劳动力密集,效率低下并导致系统停机时间。相反,从植物废物中提取的植物化学物质越来越多地发现了一系列技术应用,在循环经济中提供了额外的收入。植物从根部散发着许多代谢产物,例如多酚,它们具有促进人类健康的抗氧化特性,以及在调节植物生长和发育以及植物 - 微生物相互作用中具有作用的分子。因此,根渗出液是用作植物生物刺激物或植物保护产品的新型活动的潜在来源。该项目试图将豌豆芽的水培种植作为模型系统来解决自毒性问题并允许营养回收,同时利用有机分离,以从根本上恢复有机分子,从而从根本上恢复有机分子,并使他们的物业恢复了物体。为此,将遵循两种平行方法,以最大程度地减少植物毒性渗出液的负面影响。首先,我们将寻求优化生长环境(再循环流,温度等),以了解水培培养条件如何影响植物毒素的产生。其次,我们将尝试在水培系统中建立半杆尺度的膜过滤过程,以连续去除渗出液。由于根渗出液可能包含有价值的化合物(例如,在人/动物营养中),或可以筛选出新的活动(例如,作为植物生物刺激剂或抗菌剂),因此这种综合过滤提供了额外的机会来利用分级的植物化学物质。该提案是多学科的,涉及各种互补背景的群体。 In particular, the project involves chemical/bio-process engineering (nutrient composition and/or flow rates to facilitate the production and recovery of exudates), membrane science (use of appropriate membranes), analytical chemistry (use appropriate methodologies to characterise the composition of the exudates), and plant physiology (assessing plant growth and in-vitro and in-vivo bioassays to identify novel applications of exudates).如果成功,这个创新的项目可能会彻底改变水培文化系统。我们的结果将提供证据证明将合并系统用于未来的Soilless植物生长和化学生产农场的技术可行性。当进一步发展时,我们的想法将有助于建立下一代生物精制原则,能够从植物根系中分离出宝贵的化学物质,同时产生更多的作物生物量。总而言之,我们提出了一个高度创新但相对简单,无化学和可扩展的过程,以刺激水培渗出剂的化合物的产生和回收。这将最大程度地提高植物生长并解决此类系统中现有的自身毒性问题,同时引入了新的水培农业收入路线的潜力。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emmanouil Papaioannou其他文献

Emmanouil Papaioannou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emmanouil Papaioannou', 18)}}的其他基金

Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
  • 批准号:
    EP/Y032004/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.63万
  • 项目类别:
    Research Grant
Bio-GENTLE Green membrane bioseparation for circular economy
Bio-GENTLE 绿色膜生物分离促进循环经济
  • 批准号:
    EP/Y031997/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.63万
  • 项目类别:
    Research Grant

相似国自然基金

高强韧淀粉纳米晶-多糖仿生包装膜构建及其成膜过程中“链簇结构-三维网络”形成机制的研究
  • 批准号:
    32372278
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
玉米全膜双垄沟“一膜两年用”机械化分层扎穴追肥过程解析及其智能高效施肥方法
  • 批准号:
    52365029
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
Rhodopsin跨纤毛运输与微丝组装复合体在光感受器膜盘生物发生过程的功能关系分析
  • 批准号:
    32371015
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
酸/碱胁迫下信号分子在微藻附着成膜过程中的作用及机制研究
  • 批准号:
    32360921
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
鱼体肌膜劣变过程中肌膜阻抗信息的变化机制研究
  • 批准号:
    32302203
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Probing SNARE assembly and disassembly in vitro and in live cells
在体外和活细胞中探测 SNARE 组装和拆卸
  • 批准号:
    10679644
  • 财政年份:
    2023
  • 资助金额:
    $ 25.63万
  • 项目类别:
Physiology Core
生理学核心
  • 批准号:
    10747627
  • 财政年份:
    2023
  • 资助金额:
    $ 25.63万
  • 项目类别:
Synthetic circuits for therapeutic platelet production and immunomodulation
用于治疗性血小板生成和免疫调节的合成回路
  • 批准号:
    10745237
  • 财政年份:
    2023
  • 资助金额:
    $ 25.63万
  • 项目类别:
Sensory Ion Channel Modulation by Bioactive Lipids
生物活性脂质对感觉离子通道的调节
  • 批准号:
    10622095
  • 财政年份:
    2023
  • 资助金额:
    $ 25.63万
  • 项目类别:
Molecular mechanisms of proton-coupled dynamic processes in biology
生物学中质子耦合动态过程的分子机制
  • 批准号:
    10552201
  • 财政年份:
    2023
  • 资助金额:
    $ 25.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了