Nature-inspired self-powered reverse osmosis membranes for sustainable water purification

受自然启发的自供电反渗透膜,用于可持续水净化

基本信息

  • 批准号:
    EP/X017923/1
  • 负责人:
  • 金额:
    $ 25.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Increasing demand for and shortage of clean drinking water as a result of rapid urbanization, population growth, gross misuse, and climate change have become an unprecedented urgent issue in this century. Globally nearly 2 in every 10 people lack access to clean drinking water, and according to World Health Organization, 3,900 children die every day due to various diseases transmitted by unsafe water/poor hygiene. According to the U.N. World Water Development Report, this troubling predicament is projected to worsen substantially by 2050, when at least a quarter of the people on Earth will live in a country suffering from chronic or recurring freshwater shortages. The existing freshwater bodies need to be protected and new sources of clean water must be generated through new methods of purifying water at lower cost and with less energy to meet the growing demand. This requires better and innovative water treatment technology. Membrane-based water filtration is superior to the disinfection, distillation, or media filtration methods because of the cleaner process and requires no thermal inputs and regeneration of spent media. So far, the majority of separation and water filtration membranes are based on conventional polymeric materials, such as cellulose, polyamide, polysulfone, polyvinylidene fluoride, polyacrylonitrile, etc. The limiting factors for these membrane-based filtration technologies include, for example: high energy consumption, low flux, rejection compromise, high organic and biological fouling; poor tolerance to high temperature, oxidizing agents, acidic/alkaline medium, and organic solvents, impart significant impetus to deliver new research for novel water treatment process. Over the past decade, nanotechnology has totally transformed from academic research to commercial reality. Attempts have been made to construct membranes using nanomaterials, microgels, cross-linked proteins etc. The new materials or design-based innovations using advanced materials, however, are still deficient in tackling one of the fundamental bottlenecks in conventional membrane filtration - the requirement of surplus external pressure to overcome the osmotic pressure of the salt solution to drive pure water across a semipermeable membrane. Transport of water molecules against the osmotic pressure in the absence of an external driving force seems to break the fundamental thermodynamic laws, but such natural phenomena exist. Salt-tolerant trees are one of the simplest examples in nature that efficiently convert the salty water of its environment into freshwater by using highly negative pressure that is generated by evaporative capillary forces in mangrove leaves. In this proposal, the applicant aims to design a new type of membrane which mimics the natural membranes such that self-driven water transport can be achieved.
由于城市化快速,人口增长,滥用和气候变化的迅速,对清洁饮用水的需求不断增长和缺乏,在本世纪已成为前所未有的紧急问题。在全球范围内,每10人中有近2人无法获得清洁的饮用水,根据世界卫生组织的说法,由于不安全的水/卫生症不安全的各种疾病,每天3,900名儿童每天死亡。根据《联合国世界水发展报告》,这种令人不安的困境预计到2050年将大大恶化,当时至少有四分之一的人将生活在一个患有慢性或经常出现的淡水短缺的国家。现有的淡水体需要受到保护,必须通过以较低的成本净化水净化水的新方法来产生新的清洁水来源,以减少能量以满足不断增长的需求。这需要更好,创新的水处理技术。基于膜的水过滤优于消毒,蒸馏或培养基过滤方法,因为更清洁的过程,不需要热输入和消费培养基的再生。到目前为止,大多数分离和水过滤膜基于常规的聚合物材料,例如纤维素,聚酰胺,多酰胺,多硫酮,聚乙烯二氟化物,聚丙烯硝基硝基等。消费,低通量,拒绝折衷,高有机和生物结垢;对高温,氧化剂,酸性/碱性培养基和有机溶剂的耐受性不佳,可以为新的水处理过程提供新的动力。在过去的十年中,纳米技术已经从学术研究转变为商业现实。尝试使用纳米材料,微凝胶,交联蛋白等构建膜。但是,使用先进材料的新材料或基于设计的创新仍缺乏解决常规膜过滤中的基本瓶颈之一 - 需要剩余的外部压力以克服盐溶液的渗透压,以使纯净水穿过半透明的膜。在没有外部驱动力的情况下,水分子反对渗透压的运输似乎打破了基本的热力学定律,但存在这种自然现象。耐盐的树是自然界中最简单的例子之一,它们通过使用红树林叶片中蒸发毛细管产生的高负压通过高度负压将其环境的咸水转化为淡水。在此提案中,申请人旨在设计一种新型的膜,该膜模仿自然膜,从而可以实现自动驱动的水运输。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proton and molecular permeation through the basal plane of monolayer graphene oxide.
  • DOI:
    10.1038/s41467-023-43637-w
  • 发表时间:
    2023-11-27
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Wu, Z F;Sun, P Z;Wahab, O J;Tan, Y T;Barry, D;Periyanagounder, D;Pillai, P B;Dai, Q;Xiong, W Q;Vega, L F;Lulla, K;Yuan, S J;Nair, R R;Daviddi, E;Unwin, P R;Geim, A K;Lozada-Hidalgo, M
  • 通讯作者:
    Lozada-Hidalgo, M
Decoding the Interplay between Topology and Surface Charge in Graphene Oxide Membranes During Humidity Induced Swelling.
  • DOI:
    10.1021/acsnano.3c08260
  • 发表时间:
    2023-11-14
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    bin Shaharudin, Mohd Rafie;Williams, Christopher D.;Achari, Amritroop;Nair, Rahul R.;Carbone, Paola
  • 通讯作者:
    Carbone, Paola
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RAHUL RAVEENDRAN NAIR其他文献

RAHUL RAVEENDRAN NAIR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RAHUL RAVEENDRAN NAIR', 18)}}的其他基金

RS Fellow - EPSRC grant (2014): Exploring high temperature superconductivity in novel layered materials.
RS 研究员 - EPSRC 资助(2014 年):探索新型层状材料的高温超导性。
  • 批准号:
    EP/N005082/1
  • 财政年份:
    2015
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Fellowship

相似海外基金

Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
  • 批准号:
    RGPIN-2018-05243
  • 财政年份:
    2022
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Discovery Grants Program - Individual
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
  • 批准号:
    RGPIN-2018-05243
  • 财政年份:
    2021
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Discovery Grants Program - Individual
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
  • 批准号:
    RGPIN-2018-05243
  • 财政年份:
    2020
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Discovery Grants Program - Individual
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
  • 批准号:
    RGPIN-2018-05243
  • 财政年份:
    2019
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Discovery Grants Program - Individual
Bio-inspired quasi-periodic materials: their functionalization and physical property control
仿生准周期材料:其功能化和物理性能控制
  • 批准号:
    19K03766
  • 财政年份:
    2019
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了