Development of micro-thermal dividers for hybrid pixel detectors coupling cryogenic HPGe sensors and room temperature ASICs.

开发用于耦合低温 HPGe 传感器和室温 ASIC 的混合像素探测器的微热分配器。

基本信息

  • 批准号:
    EP/X017494/1
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

This project is proposing a new, unproven and disruptive technology to enable the application of High Purity germanium (HPGe) sensors with existing room temperature Application Specific Integrated Circuits (ASICs) in hybrid pixel detectors. It is proposed to design and test a micro-thermal divider translating the physics requirements set by the Fourier's Law of heat conduction, into an engineered solution exploiting the capabilities offered by micro-fabrication and micro-machining processes, and by micro-electronics interconnection techniques. The micro-thermal divider will control a challenging delta T of ~130deg C over few 100's um. The hybrid pixel detectors prototyped in this project will target mainly applications in photon-science. Here, hybrid pixel detectors provide high performance solutions for X-ray detection by combining direct photon detection, small pixel size, fast readout and sophisticated signal processing circuitry in each pixel. For X-ray detection above 20 keV, high-Z sensors different than silicon are required to achieve high quantum efficiency, but many high-Z materials such as GaAs, CdTe and CdZnTe often suffer from unfavourable material properties or nonuniformities. Remarkably, HPGe crystals provide a unique combination of favourable crystal properties and material purity that translates into a high, uniform detection efficiency and an excellent energy resolution, over a large area (wafers ~90mm dia.). The deployment of HPGe sensors in hybrid pixel detectors is currently limited by the cryogenic requirements of the sensors, which is usually linked to the development of cryogenic ASICs. These are niche, complex and costly developments. Instead, we propose a shift of paradigm in the existing thought by studying the effectiveness of micro-technologies to replace the need of cryogenic ASICs for high-energy radiation detection instrumentation. To achieve this, a micro-thermal divider will be inserted between the sensor and the ASIC. It will insulate the sensor from the heat generated by the ASIC, and it will provide direct cooling underneath the sensor.The high-risk and speculative aspect of the project is related to managing a high temperature gradient (~130deg C) over a short distance (100's um), while maintaining an excellent electrical performance and mechanical stability of the device. The ambition of this bid is to build a functional prototype demonstrating the feasibility of the technology (proof of concept), and generating foundation work for the next iteration, where a fully engineered device will be built.The main aim of the project is to position the UK in a leadership role to build the next generation of hybrid pixel detectors for flagship synchrotron and free electron laser experiments. We want to develop an innovative technique to operate HPGe sensors with room temperature ASICs. High-end applications like nuclear medical imaging applications (detecting gamma-rays) and X-rays spectral molecular imaging would also be beneficiaries of this technological progress, which has the potential to improve the quality of diagnostics in healthcare. There is an energy saving aspect related to this proposed solution. The operating temperature of a room temperature ASIC would require less cooling power than an equivalent cryogenic ASIC. This would contribute to reduce the carbon footprint while developing cutting edge instrumentation based on HPGe sensors. The analogy of satellite operations with in-vacuum thermal management/energy efficiency via micro thermal-dividers could lead to more efficient thermal control systems for space instrumentation. Finally, R&D on a micro thermal-divider has synergies with the field of quantum computing. Here, our approach could be used to develop new packaging solutions for the quantum-to-classical interface in a cryogenic environment with multiple temperature stages. For instance, this could benefit quantum computers based on superconducting qubits.
该项目正在提出一种新的,未经证实的破坏性技术,以使高纯净锗(HPGE)传感器与混合像素探测器中的现有室温施用特定于集成电路(ASIC)一起应用。提议设计和测试微热分隔器,将傅立叶热传导定律设定的物理要求转换为一种工程解决方案,利用了微型制作和微型缓解过程提供的能力,以及微电动电子互连技术。微热分隔线将在几个100的UM上控制〜130DEG C的具有挑战性的三角洲。该项目中原型的混合像素检测器将主要针对光子科学应用。在这里,混合像素检测器通过组合直接光子检测,小像素大小,快速读数和复杂的信号处理电路,为X射线检测提供了高性能解决方案。对于高于20 keV的X射线检测,需要与硅不同的高Z传感器来达到高量子效率,但是许多高Z材料(例如GAAS,CDTE和CDZNTE)通常会遭受不利的材料特性或非均匀性的影响。值得注意的是,HPGE晶体提供了有利的晶体特性和材料纯度的独特组合,可以转化为较高的均匀检测效率和出色的能量分辨率,在大面积(Wafers〜90mm Dia。)上。 HPGE传感器在混合像素探测器中的部署目前受传感器的低温要求的限制,这通常与低温ASIC的发展有关。这些是利基市场,复杂且昂贵的发展。取而代之的是,我们通过研究微技术在现有思想中提出范式转移,以取代对高能辐射检测仪器的低温ASIC的需求。为此,将在传感器和ASIC之间插入微热分隔线。它将使传感器与ASIC产生的热量隔离,并将在传感器下方提供直接冷却。项目的高风险和投机性方面与在短距离内管理高温梯度(〜130DEG C)有关,同时保持设备的出色电气性能和机械稳定性。该竞标的野心是建立一个功能原型,展示了该技术的可行性(概念验证),并为下一次迭代创造基础工作,在该迭代中将建造一个完整的工程设备。该项目的主要目的是将英国的领导作用定位为领导角色,以建立下一代混合像素探测器的旗杆同步器和自由电子乐器。我们希望开发一种创新的技术,以使用室温ASIC操作HPGE传感器。诸如核医学成像应用(检测伽玛射线)和X射线光谱分子成像等高端应用也将是这种技术进步的受益者,这有可能提高医疗保健诊断的质量。有一个与此提议的解决方案相关的节能方面。与等效的低温ASIC相比,室温ASIC的工作温度将需要更低的冷却能力。这将有助于减少碳足迹,同时根据HPGE传感器开发最先进的仪器。通过微型热偏心者使用卫星操作的类比,可以通过微型热偏心者进行热量管理/能量效率,从而为空间仪器提供更有效的热控制系统。最后,在微型热分析器上的研发与量子计算领域具有协同作用。在这里,我们的方法可用于在具有多个温度阶段的低温环境中为量子到古典界面开发新的包装解决方案。例如,这可以使基于超导量子位的量子计算机受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcello Borri其他文献

Marcello Borri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

自蔓延反应产热辅助的金属箔片微电阻焊连接机理与工艺调控研究
  • 批准号:
    52375357
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
含动态化学键高分子网络中POSS微相的形成及其对材料热及力学性能的影响
  • 批准号:
    52373082
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
微藻两段水热耦合液化水相循环利用过程中氮的迁移转化机理与调控机制
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
微藻两段水热耦合液化水相循环利用过程中氮的迁移转化机理与调控机制
  • 批准号:
    52360007
  • 批准年份:
    2023
  • 资助金额:
    32.00 万元
  • 项目类别:
    地区科学基金项目
木质纤维素耦合改性碳基催化剂辅助微波热解降低微藻生物油氮含量的机理研究
  • 批准号:
    52366013
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of micro thermal transport probe for heat management using quantum spin systems
使用量子自旋系统开发用于热管理的微型热传输探针
  • 批准号:
    22K03950
  • 财政年份:
    2022
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
  • 批准号:
    10323474
  • 财政年份:
    2021
  • 资助金额:
    $ 24.99万
  • 项目类别:
Development of a eco thermal expansion manufacturing method for glass dome structure
玻璃穹顶结构生态热膨胀制造方法的开发
  • 批准号:
    20K15151
  • 财政年份:
    2020
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of highly efficient micro thermal reactors with thermoplasmonics of transition metal nitrides
开发具有过渡金属氮化物热等离子体的高效微型热反应器
  • 批准号:
    20H02075
  • 财政年份:
    2020
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of STM/Thermal Vibration AFM for Simultaneous Measurement of Single Molecular Conductivity and Rigidity
开发用于同时测量单分子电导率和刚性的 STM/热振动 AFM
  • 批准号:
    20K15175
  • 财政年份:
    2020
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了