A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
基本信息
- 批准号:10323474
- 负责人:
- 金额:$ 23.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During an epidemic, testing numerous patients puts a heavy burden on the healthcare sector, while infections
continue to rise in the absence of a treatment. In such a scenario, micro-fluidics technology can be used to
develop affordable point-of-care diagnostic tools for detecting infected patients early, and effective drug
discovery platforms for synthesizing therapeutic drugs. The development of such devices is extremely
challenging, needing expertise in multiple disciplines (e.g. physics, chemistry, biology), and understanding the
interplay between variables that influence operating performance requires computational assistance. While
advanced design software may be adopted to simulate the performance of such devices, precise knowledge of
prediction reliability is of paramount importance to ensure their suitability for clinical decision-making.
Therefore, the long term objectives of this project are to commercially introduce a new paradigm of digital
engineering design that focuses on evaluating the fluctuations in performance outputs due to variability in input
parameters and to demonstrate the relevance of such a simulation-based technology through specific
application to development of micro-fluidic biomedical devices. The envisioned proof-of-concept is a modular
computational system with practical commercial applications in the healthcare sector that demonstrates how
scientific computing, numerical simulation & artificial intelligence modeling approaches can lead to an
increased understanding of the performance of a micro-fluidic system subject to operating uncertainty, and
enable robust design optimization. The proposed approach is to employ innovative stochastic spectral methods
& advanced numerical schemes to conduct computationally efficient, high fidelity simulations involving
uncertainty quantification & propagation, model sensitivity analysis, and finite element analysis for the
engineering evaluation of progressively complex micro-fluidic device designs, and to incorporate artificial
intelligence based meta-modeling techniques to perform design space exploration for performance
improvement of such devices. The R&D efforts would establish the technical merits & feasibility of a simulation-
based technology for predictive stochastic analysis & multi-disciplinary engineering evaluation of novel micro-
fluidic devices that addresses the need for efficient & accurate performance assessment of such devices in
practical (often uncertain/variable) operating scenarios. It could subsequently be utilized by biomedical
engineers to foster the rapid development of robust next-generation devices that operate reliably within desired
operating performance specifications, such as diagnostic tools with improved detection sensitivity & specificity,
and drug discovery platforms with enhanced reconstitution of complex cellular interactions. These can play a
crucial role in rapid short-term response to control the spread of infections & to mitigate disease outbreaks,
while also offering improved solutions for enhancing long-term access to primary healthcare & comprehensive
disease treatment, thereby significantly improving public health, particularly in resource constrained settings.
在流行病中,对许多患者进行测试给医疗保健部门带来了沉重的负担,而感染
在没有治疗的情况下继续上升。在这种情况下,微流体技术可用于
开发负担得起的护理点诊断工具,用于早日检测受感染的患者和有效的药物
合成治疗药物的发现平台。这种设备的开发极为
具有挑战性,需要多个学科的专业知识(例如物理,化学,生物学),并理解
影响操作绩效的变量之间的相互作用需要计算援助。尽管
可以采用高级设计软件来模拟此类设备的性能,精确的知识
预测可靠性对于确保其适合临床决策的适用性至关重要。
因此,该项目的长期目标是在商业上引入新的数字范式
工程设计的重点是评估由于输入的可变性而导致性能输出的波动
参数并通过特定来证明这种基于模拟的技术的相关性
用于开发微氟生物医学设备。设想的概念验证是一个模块化
在医疗保健领域具有实际商业应用的计算系统,证明了如何
科学计算,数值模拟和人工智能建模方法可以导致
增加对微荧光系统的性能的了解,受到运营不确定性的影响,并且
启用强大的设计优化。提出的方法是采用创新的随机光谱方法
和高级数值方案,以进行计算高效,高保真模拟涉及
不确定性定量和传播,模型灵敏度分析和有限元分析
逐步复杂的微富集设备设计的工程评估,并合并人造
基于智能的元模型技术以执行性能的设计空间探索
改进此类设备。研发工作将确定模拟的技术优点和可行性 -
基于预测性随机分析和多学科工程评估的基于新型微型的技术评估
流体设备,以解决此类设备在
实用(通常不确定/可变)的操作场景。随后可以通过生物医学来利用
工程师促进可靠地运行的强大下一代设备的快速开发
操作性绩效规格,例如具有提高检测灵敏度和特异性的诊断工具,
以及具有增强复杂细胞相互作用的重构的药物发现平台。这些可以玩
在快速短期反应中至关重要的作用,以控制感染的传播和减轻疾病暴发的蔓延,
同时还提供改进的解决方案,以增强长期获得初级医疗保健和全面的访问
疾病治疗,从而大大改善公共卫生,尤其是在资源受限的环境中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cafe Move: A Novel Program for Prevention of Age-Related Physical Frailty
Cafe Move:预防与年龄相关的身体虚弱的新计划
- 批准号:1086196010861960
- 财政年份:2023
- 资助金额:$ 23.21万$ 23.21万
- 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:1072581110725811
- 财政年份:2023
- 资助金额:$ 23.21万$ 23.21万
- 项目类别:
Informing alcohol policy: The impact of evidence-based alcohol warnings on consumption
告知酒精政策:基于证据的酒精警告对消费的影响
- 批准号:1056512010565120
- 财政年份:2023
- 资助金额:$ 23.21万$ 23.21万
- 项目类别:
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
- 批准号:1076264510762645
- 财政年份:2023
- 资助金额:$ 23.21万$ 23.21万
- 项目类别:
Structural and functional studies of YbtPQ for fighting bacterial infections
YbtPQ 对抗细菌感染的结构和功能研究
- 批准号:1064488910644889
- 财政年份:2023
- 资助金额:$ 23.21万$ 23.21万
- 项目类别: