Van der Waals Ga2O3 functional materials epitaxy: Revolutionary power electronics
范德华 Ga2O3 功能材料外延:革命性的电力电子学
基本信息
- 批准号:EP/X015882/1
- 负责人:
- 金额:$ 25.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The imminent climate risks for our planet have been highlighted by the UN's Intergovernmental Panel on Climate Change (IPCC) calling it "code red for humanity" in its scientific report in August 2021. Presently, nearly all energy conversion power electronics use Silicon (Si), which is relatively inefficient, wasting energy as heat. In fact, 72% of global primary energy consumption is wasted, of which 20% could be saved with new power electronics! Wide bandgap devices using GaN and SiC are entering the market, but they either do not sustain high enough voltages or are too expensive for widespread use, e.g., in smart grids. Ultrawide bandgap Gallium Oxide (Ga2O3), with efficiency far exceeding that of narrow bandgap Si, has emerged as a transformative contender with low cost and >1-2 kV, even 10 kV voltage capability, with potential for a massive >100x reduction in power conversion efficiency losses. Considering Ga2O3's high Baliga figure of merit, the metric determining how beneficial a material is for power devices, it has potential to even exceed current wide bandgap power devices (GaN, SiC), now replacing incumbent Si power electronics, by more than a factor of 5-10 in performance.In this project, we target high voltage power devices using van der Waals epitaxy of functional Ga2O3 as a transformative and revolutionary vehicle to open a new research field for low cost high voltage power devices. This form of epitaxy uses an intermediate layer, which reduces the substrate-epitaxial layer interaction, enabling growth of the epitaxial layer onto a foreign material with different crystal structure at the wafer-level, potentially followed by layer transfer to other beneficial substrates, which would otherwise not be possible. If successful this will enable for the first time even >10kV low cost power electronics devices, e.g. for smart grids, i.e., a high reward but the approach taken is highly speculative: (i) Do van der Waals materials survive the reactive ambient of a Ga2O3 MOCVD chamber? (ii) does potential damage to the van der Waals material impact the subsequent device quality? (iii) can we control Ga2O3's polytypes during growth? (iv) do van der Waals grown interfaces provide high enough electron and phonon transport through them, and can these be optimized or mitigated for e.g. using growth conditions or h-BN thickness, or during a layer transfer? If successful, subsequent layer transfer would allow heterogeneous integration of Ga2O3 with numerous low-cost high thermal conductivity substrates such as poly-AlN and poly-diamond to revolutionize device heat sinking. Use of p-type substrates would open the design space to bipolar devices, even superjunctions, i.e. device concepts which have transformed Si power electronics, concepts which have rarely being able to venture beyond Si, a major impact if we are successful. Lateral devices will be used to validate the effectiveness of the integration, with routes to possible commercialization of high performance devices to be explored through our industrial partnership with Dynex Semiconductor. Vertical devices (with improved power density over lateral configurations, attractive for power electronics applications) will also be demonstrated.The programme also marks a key milestone from a sustainability perspective, within a circular economy; van der Waals epitaxy or epilayer transfer used for the active devices will minimize the need for Ga2O3 substrates, to transfer to substrates with less sustainability issues (elemental Ga may become scarce within 100 years), minimizing the amount of Ga being used in power devices. Successful demonstration of heterogeneous integration of Ga2O3 by van der Waals epitaxy will also pave the way for low-cost, wafer-level integration with other ultrawide bandgap materials (e.g. single crystalline AlGaN, AlN, diamond), offering the potential to strongly reduce the contribution of inefficiency in power electronics to global energy consumption.
联合国政府间气候变化专门委员会 (IPCC) 在 2021 年 8 月的科学报告中强调了地球面临的迫在眉睫的气候风险,称之为“人类红色代码”。目前,几乎所有能源转换电力电子设备都使用硅 (Si) ,效率相对较低,以热量的形式浪费能源。事实上,全球一次能源消耗的 72% 被浪费了,其中 20% 可以通过新的电力电子设备节省!使用 GaN 和 SiC 的宽带隙器件正在进入市场,但它们要么无法维持足够高的电压,要么过于昂贵,无法广泛使用,例如在智能电网中。超宽带隙氧化镓 (Ga2O3) 的效率远远超过窄带隙硅,已成为低成本、>1-2 kV、甚至 10 kV 电压能力的变革性竞争者,并且有可能大幅降低 >100 倍的功耗转换效率损失。考虑到 Ga2O3 的高 Baliga 品质因数(决定材料对功率器件的益处程度的指标),它甚至有可能超过当前的宽带隙功率器件(GaN、SiC),从而取代现有的 Si 功率电子器件,超过一个因子性能5-10。在这个项目中,我们的目标是使用功能性Ga2O3范德华外延的高压功率器件作为变革性和革命性的载体,为低成本高压功率开辟新的研究领域设备。这种形式的外延使用中间层,减少了衬底与外延层的相互作用,使得外延层能够在晶圆级上生长到具有不同晶体结构的异质材料上,随后可能会层转移到其他有益的衬底上,这将否则不可能。如果成功,这将首次实现 >10kV 的低成本电力电子设备,例如对于智能电网,即高回报,但所采取的方法具有高度推测性:(i) 范德华材料能否在 Ga2O3 MOCVD 室的反应环境中存活? (ii) 范德华材料的潜在损坏是否会影响后续器件的质量? (iii) 我们可以在生长过程中控制Ga2O3 的多型吗? (iv) 范德华生长的界面是否提供足够高的电子和声子传输通过它们,并且这些可以被优化或减轻,例如使用生长条件或 h-BN 厚度,或在层转移期间?如果成功,后续的层转移将允许 Ga2O3 与众多低成本高导热基板(例如聚 AlN 和聚金刚石)异质集成,从而彻底改变器件散热。 p型衬底的使用将为双极器件甚至超级结打开设计空间,即改变硅电力电子器件的器件概念,这些概念很少能够超越硅,如果我们成功的话,这将产生重大影响。横向器件将用于验证集成的有效性,并通过我们与 Dynex Semiconductor 的工业合作伙伴关系探索高性能器件可能商业化的途径。还将展示垂直设备(与横向配置相比具有更高的功率密度,对电力电子应用有吸引力)。从可持续发展的角度来看,该计划还标志着循环经济中的一个重要里程碑;用于有源器件的范德华外延或外延层转移将最大限度地减少对 Ga2O3 衬底的需求,转移到可持续性问题较少的衬底(元素 Ga 可能在 100 年内变得稀缺),从而最大限度地减少功率器件中使用的 Ga 量。范德华外延异质集成Ga2O3的成功演示也将为与其他超宽带隙材料(例如单晶AlGaN、AlN、金刚石)的低成本、晶圆级集成铺平道路,提供了大幅降低贡献的潜力电力电子设备效率低下对全球能源消耗的影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Kuball其他文献
Novel thermal management of GaN electronics - Diamond substrates
GaN 电子器件的新颖热管理 - 金刚石衬底
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Martin Kuball;J. Pomeroy;J. Calvo;Huarui Sun;Roland B. Simon;D. Francis;F. Faili;D. Twitchen;S. Rossi;M. Alomari;E. Kohn;L. Tóth;B. Pécz - 通讯作者:
B. Pécz
Non-Arrhenius Degradation of AlGaN/GaN HEMTs Grown on Bulk GaN Substrates
在块状 GaN 衬底上生长的 AlGaN/GaN HEMT 的非阿累尼乌斯退化
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.9
- 作者:
M. Ťapajna;N. Killat;J. Moereke;T. Paskova;K. Evans;J. Leach;X. Li;U. Ozgur;H. Morkoç;K. Chabak;A. Crespo;J. Gillespie;R. Fitch;M. Kossler;D. Walker;M. Trejo;G. Via;J. Blevins;Martin Kuball - 通讯作者:
Martin Kuball
Elimination of Degenerate Epitaxy in the Growth of High Quality B 12 As 2 Single Crystalline Epitaxial Films
高质量B 12 As 2 单晶外延薄膜生长过程中简并外延的消除
- DOI:
10.1557/opl.2011.316 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yu Zhang;Hui Chen;M. Dudley;Yi Zhang;J. Edgar;Y. Gong;S. Bakalova;Martin Kuball;Lihua Zhang;D. Su;Yimei Zhu - 通讯作者:
Yimei Zhu
Growth Mechanisms and Defect Structures of B12As2 Epilayers Grown on 4H-SiC Substrates
4H-SiC 衬底上生长的 B12As2 外延层的生长机制和缺陷结构
- DOI:
10.1016/j.jcrysgro.2011.12.065 - 发表时间:
2011 - 期刊:
- 影响因子:1.8
- 作者:
Yu Zhang;Hui Chen;M. Dudley;Yi Zhang;J. Edgar;Y. Gong;S. Bakalova;Martin Kuball;Lihua Zhang;D. Su;Yimei Zhu - 通讯作者:
Yimei Zhu
Control of Buffer-Induced Current Collapse in AlGaN/GaN HEMTs Using SiNx Deposition
使用 SiNx 沉积控制 AlGaN/GaN HEMT 中缓冲器引起的电流崩塌
- DOI:
10.1109/ted.2017.2738669 - 发表时间:
2017 - 期刊:
- 影响因子:3.1
- 作者:
W. M. Waller;M. Gajda;S. Pandey;J. Donkers;D. Calton;J. Croon;J. Sonsky;M. Uren;Martin Kuball - 通讯作者:
Martin Kuball
Martin Kuball的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Kuball', 18)}}的其他基金
Transforming Net Zero with Ultrawide Bandgap Semiconductor Device Technology (REWIRE)
利用超宽带隙半导体器件技术 (REWIRE) 改造净零
- 批准号:
EP/Z531091/1 - 财政年份:2024
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
Ultrawide Bandgap AlGaN Power Electronics - Transforming Solid-State Circuit Breakers (ULTRAlGaN)
超宽带隙 AlGaN 电力电子 - 改造固态断路器 (ULTRAlGaN)
- 批准号:
EP/X035360/1 - 财政年份:2024
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
ECCS-EPSRC - Advanced III-N Devices and Circuit Architectures for mm-Wave Future-Generation Wireless Communications
ECCS-EPSRC - 用于毫米波下一代无线通信的先进 III-N 器件和电路架构
- 批准号:
EP/X012123/1 - 财政年份:2023
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
Boron-based semiconductors - the next generation of high thermal conductivity materials
硼基半导体——下一代高导热材料
- 批准号:
EP/W034751/1 - 财政年份:2023
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
FINER: Future thermal Imaging with Nanometre Enhanced Resolution
FINER:具有纳米增强分辨率的未来热成像
- 批准号:
EP/V057626/1 - 财政年份:2022
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
Materials and Devices for Next Generation Internet (MANGI)
下一代互联网材料和设备(MANGI)
- 批准号:
EP/R029393/1 - 财政年份:2018
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
Sub-micron 3-D Electric Field Mapping in GaN Electronic Devices
GaN 电子器件中的亚微米 3D 电场测绘
- 批准号:
EP/R022739/1 - 财政年份:2018
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
Integrated GaN-Diamond Microwave Electronics: From Materials, Transistors to MMICs
集成 GaN-金刚石微波电子器件:从材料、晶体管到 MMIC
- 批准号:
EP/P00945X/1 - 财政年份:2017
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
Quantitative non-destructive nanoscale characterisation of advanced materials
先进材料的定量无损纳米级表征
- 批准号:
EP/P013562/1 - 财政年份:2017
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
High Performance Buffers for RF GaN Electronics
适用于 RF GaN 电子器件的高性能缓冲器
- 批准号:
EP/N031563/1 - 财政年份:2016
- 资助金额:
$ 25.67万 - 项目类别:
Research Grant
相似国自然基金
Van der Waals 异质结中层间耦合作用的同步辐射研究
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:联合基金项目
二维van der Waals铁磁性绝缘材料的高压研究
- 批准号:11904416
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于黑磷烯van der Waals异质结的GHz带宽光通讯波段探测器研究
- 批准号:61704082
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于石墨烯衬底van der Waals薄膜气-液-固外延生长的高质量氧化锌制备
- 批准号:61604062
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相对论Euler方程组的相变的容许准则及适定性研究
- 批准号:11571227
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Indistinguishable Quantum Emitters in van der Waals Materials
范德华材料中难以区分的量子发射器
- 批准号:
DP240103127 - 财政年份:2024
- 资助金额:
$ 25.67万 - 项目类别:
Discovery Projects
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
- 批准号:
EP/Y028287/1 - 财政年份:2024
- 资助金额:
$ 25.67万 - 项目类别:
Fellowship
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 25.67万 - 项目类别:
Continuing Grant
CAREER: Multiferroicity in van der Waals Heterostructures
职业:范德华异质结构的多铁性
- 批准号:
2340773 - 财政年份:2024
- 资助金额:
$ 25.67万 - 项目类别:
Continuing Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 25.67万 - 项目类别:
Continuing Grant