Artificial Spin Ice for Rewritable Magnonics

用于可重写磁振子学的人造旋转冰

基本信息

  • 批准号:
    EP/X015661/1
  • 负责人:
  • 金额:
    $ 109.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The key physical concept of this project is that magnetic spin-waves, or their quanta magnons, can act as information carriers and be manipulated for information processing & computation. Conventional computers rely on physically moving particles (electrons), and vast amounts of energy are wasted by ohmic loss and heating induced by electronic transit, both within the logic devices and particularly between the separate logic and storage media. If current trends continue, computation will consume one third of global energy production by 2040, and consequently increasing computational energy efficiency is a critical challenge. Because magnets can transfer information from one device to the next without the exchange of any physical particles and have intrinsic passive data storage, 'magnonics' is in principle orders of magnitude more energy efficient than standard electronics & a promising route to aiding the global energy crisis.Magnets are used in memory devices as they passively retain information written into them (non-volatile). This project will enable creation of coupled arrays of nanomagnets that can be viewed as both memory and processor where novel circuits can be written and reprogrammed at will. Our ability to accomplish this exploits a technique which we have developed called All-Optical Magnetic Switching (AOMS), allowing controlled writing of any individual nanomagnet in the array with a low-power laser like a Blu-Ray player, plus world-leading expertise harnessing nanomagnetic arrays for spin-wave information processing - including world-first demonstration of magnonic neuromorphic computation in an array of interacting nanomagnets.Each ferromagnetic nanoisland stores a fixed average magnetization, but the magnetic moment is not completely static, instead precessing around the average direction at characteristic resonant frequencies in the microwave (GHz) range. For a single nanomagnet, the frequency is controlled by its size and shape in the same way that shortening a guitar string changes the note. Coupled arrays of nanomagnets have distinct spectral fingerprints and these can be used for readout of states. The magnonic resonances are also highly sensitive to the magnetic texture of each island, and one of our recent breakthroughs exploits this to prepare bistable vortex & macrospin islands exhibiting far greater functional magnonic flexibility versus conventional all-macrospin systems.It is already well established from simulations that the exact microstate of the array controls the resonant frequency of the magnons and that we can realise switches and transistor type devices for logic functions where the magnetic state controls whether magnons of a specific frequency can pass through or not. This project aims to integrate different functional elements and explore prototype magnonic components and circuits. It is highly adventurous, and there are many experimental challenges to overcome to realise fully magnonic computation. For example, a process called damping causes travelling spin waves to attenuate rapidly with both time and distance. This presents a challenge in terms of completing the full computation before information is lost, as well as representing a source of energy inefficiency - though it can be avoided using resonant 'standing wave' magnons with which our scheme also functions. Although it is straightforward to measure these 'standing wave' magnons in a large array, detecting travelling magnons in nanoscale device structures is at the edge of state-of-the-art capabilities. In this project we aim to develop and expand these capabilities, building on our expertise and establish fundamental understanding of the physics of coupling, synchronization, transmission, and loss between different magnonic crystal states, and deliver a fruitful playground to explore novel computation architectures.
该项目的关键物理概念是磁性自旋波或其量子镁可以充当信息载体并进行操纵以进行信息处理和计算。传统的计算机依赖于物理移动的颗粒(电子),并且在逻辑设备内,尤其是在单独的逻辑和存储介质之间,由电子运输引起的欧姆损耗和加热浪费了大量的能量。如果当前的趋势继续下去,到2040年,计算将消耗全球能源生产的三分之一,因此,提高计算能效率是一个关键挑战。由于磁铁可以将信息从一个设备传输到另一个设备而不交换任何物理颗粒并具有内在的被动数据存储,因此“镁质”原则上比标准电子学和有望帮助全球能源危机的有希望的途径更高效。MAGNETS在记忆设备中使用,因为它们被驱动地保留在其中(非智力)。该项目将启用纳米磁体的耦合阵列,可以将其视为内存和处理器,可以随意编写和重新编写新型电路。 Our ability to accomplish this exploits a technique which we have developed called All-Optical Magnetic Switching (AOMS), allowing controlled writing of any individual nanomagnet in the array with a low-power laser like a Blu-Ray player, plus world-leading expertise harnessing nanomagnetic arrays for spin-wave information processing - including world-first demonstration of magnonic neuromorphic computation in an array of interacting纳米磁体。east的铁磁纳米岛储存固定的平均磁化强度,但磁矩并不完全静态,而是在微波炉(GHz)范围内的特征谐振频率下进行预处理。对于单个纳米磁体,频率由其大小和形状控制,就像缩短吉他字符串更改音符一样。纳米磁体的耦合阵列具有不同的光谱指纹,这些指纹可用于读取状态。镁共鸣也对每个岛的磁纹理也高度敏感,我们最近的突破之一利用了这一点,以准备可出现更大功能性的巨型灵活性的可触发性涡流和宏生岛屿。磁性控制特定频率的镁是否可以通过。该项目旨在集成不同的功能元素并探索原型宏伟的组件和电路。这是高度冒险的,要实现完全宏伟的计算,需要克服许多实验挑战。例如,一个称为阻尼的过程导致行进的自旋波在时间和距离中迅速减弱。在丢失信息之前完成完整的计算以及代表效率低下的来源,这提出了一个挑战 - 尽管可以使用谐振的“常驻波”木元素来避免使用我们的方案,我们的方案也可以使用。尽管在大型阵列中测量这些“常驻波”元音很简单,但是在纳米级设备结构中检测木元素是最先进的功能的边缘。在这个项目中,我们旨在发展和扩展这些能力,以我们的专业知识为基础,并建立对不同宏伟水晶状态之间耦合,同步,传播和损失物理学的基本理解,并提供一个富有成果的操场来探索新颖的计算体系结构。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Perspective on unconventional computing using magnetic skyrmions
  • DOI:
    10.1063/5.0148469
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Lee;Robin Msiska;M. Brems;M. Kläui;H. Kurebayashi;K. Everschor-Sitte
  • 通讯作者:
    O. Lee;Robin Msiska;M. Brems;M. Kläui;H. Kurebayashi;K. Everschor-Sitte
Reconfigurable spinwave dispersion in continuous magnetic layer induced via artificial spin ice based magnonic crystal
人工自旋冰基磁力晶体诱导连续磁层中的可重构自旋波色散
  • DOI:
    10.1109/intermagshortpapers58606.2023.10228521
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dion T
  • 通讯作者:
    Dion T
Task-adaptive physical reservoir computing.
  • DOI:
    10.1038/s41563-023-01698-8
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Lee, Oscar;Wei, Tianyi;Stenning, Kilian D;Gartside, Jack C;Prestwood, Dan;Seki, Shinichiro;Aqeel, Aisha;Karube, Kosuke;Kanazawa, Naoya;Taguchi, Yasujiro;Back, Christian;Tokura, Yoshinori;Branford, Will R;Kurebayashi, Hidekazu
  • 通讯作者:
    Kurebayashi, Hidekazu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Branford其他文献

Program/Abstract #72
  • DOI:
    10.1016/j.ydbio.2011.05.094
  • 发表时间:
    2011-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adrian Vasquez;Amapola Balancio;James Nowakowski;William Branford
  • 通讯作者:
    William Branford
Lefty activity is regulated by prodomain-mature lefty interaction
  • DOI:
    10.1016/j.ydbio.2011.05.093
  • 发表时间:
    2011-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adrian Vasquez;Amapola Balancio;James Nowakowski;William Branford
  • 通讯作者:
    William Branford

William Branford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Branford', 18)}}的其他基金

DEFECTS IN FRUSTRATED SYTEMS
受挫系统中的缺陷
  • 批准号:
    EP/G004765/1
  • 财政年份:
    2008
  • 资助金额:
    $ 109.57万
  • 项目类别:
    Fellowship

相似国自然基金

半刚性转子弹性对行波旋转超声电机输出性能影响机制的研究
  • 批准号:
    52365006
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
旋转剪切作用下中煤级烟煤变形产气机理研究
  • 批准号:
    42302204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
太阳风法拉第旋转成像计划
  • 批准号:
    42374197
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
煤层水动力柔性刀具旋转动力学特征及高效扩孔机制
  • 批准号:
    52374198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于环形孔径旋转调制的时间编码成像方法研究
  • 批准号:
    12375307
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目

相似海外基金

New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理
  • 批准号:
    2419407
  • 财政年份:
    2024
  • 资助金额:
    $ 109.57万
  • 项目类别:
    Continuing Grant
New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理学
  • 批准号:
    2310275
  • 财政年份:
    2023
  • 资助金额:
    $ 109.57万
  • 项目类别:
    Continuing Grant
Exploring the physics of 3D magnetic nanowires and 3D artificial spin-ice lattices
探索 3D 磁性纳米线和 3D 人造自旋冰晶格的物理原理
  • 批准号:
    1938521
  • 财政年份:
    2017
  • 资助金额:
    $ 109.57万
  • 项目类别:
    Studentship
Realising 3D Artificial Spin-Ice Systems using Two-Photon lithography and Line-of-Sight Deposition
使用双光子光刻和视线沉积实现 3D 人造自旋冰系统
  • 批准号:
    1796470
  • 财政年份:
    2016
  • 资助金额:
    $ 109.57万
  • 项目类别:
    Studentship
Artificial Spin Ice: Designer Matter Far From Equilibrium
人造旋转冰:设计问题远离平衡
  • 批准号:
    EP/L003090/1
  • 财政年份:
    2014
  • 资助金额:
    $ 109.57万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了