The underpinning mathematics for a novel wave energy converter: the FlexSlosh WEC

新型波浪能转换器的基础数学:FlexSlosh WEC

基本信息

  • 批准号:
    EP/W033062/1
  • 负责人:
  • 金额:
    $ 10.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

The purpose of this small grant is to complete two steps in an important study that brings the power of mathematics to the problem of clean energy derived from waves. Ocean waves are a perpetual source of clean energy. Harvesting of this energy via Wave Energy Convertors (WECs) is one of the great challenges of the sustainable energy agenda. The proof of concept has been achieved, and the current overarching aim is to achieve power take-off (PTO) with commercial efficiencies, and this involves new GEOMETRIC modelling. Our proposed contribution to this agenda is to develop the underpinning mathematics for a class of next-generation floating WECs, in particular ducted wave energy converterswith flexible bottom topography, named FlexSlosh WEC.The FlexSlosh WEC is a freely floating rigid body in hydrodynamic interaction with exterior ocean surface waves, which extracts energy from its interior fluid sloshing over a flexible bottom topography. The flexible bottom may exploit novel use of deformable materials enabling the use of new distributed embedded energy converter technologies (DEEC-Tec) utilising distributed bellows action. The underpinning mathematics of the FlexSlosh WEC is based on a generalised Lie-Poisson bracket formulation of nonlinear partial differential equations for `dynamic coupling' between rigid-body motion and its interior dissipative shallow-water sloshing in two horizontal space dimensions, and computationally based on geometric and structure-preserving numerical analysis.Geometric and structure-preserving methods, which respect the underlying mathematical structure, i.e. specific geometric or topological, and conservation laws of the partial differential equations (PDEs) they solve, are a new generation of advanced numerical simulation techniques for evolutionary PDEs. Their advantages are being robust, stable, fast and precise for `long-time' computational modelling of highly-coupled nonlinear systems, which is so important for the development of a geometric optimisation tool for wave energy extraction with commercial efficiency.The fully coupled nonlinear system involves four subsystems: the interior fluid motion, the rigid body motion of the WEC, the elastic body modelling the flexible bottom topography, and the exterior wave motion. This project will concentrate on the first three. Poisson brackets, Lagrangians, Hamiltonians, and structure-preserving numerical schemes have been derived for these components as independent systems. Dynamic coupling brings in new challenges, in particular it is important to maintain the correct energy and momentum partition between components over long-time integration.The aim of the proposed research is (1) to develop new generalised Poisson bracket and Casimir invariants for the FlexSlosh WEC dynamics, i.e. dynamic coupling between rigid-body motion and its interior shallow-water sloshing and boundary coupling with the flexible bottom topography; and (2) to develop new finite difference energy- and potential-enstrophy-conserving symplectic scheme for long-time integration of the coupled nonlinear system.The proposed mathematical advances will develop the needed aspects of wave energy modelling in rigorous theoretical and numerical frameworks. By developing new continuum and discrete differential geometric pathways to transformation of ocean wave energy, the proposed underpinning mathematics project will contribute to the 2050 net zero target.
这项小赠款的目的是在一项重要的研究中完成两个步骤,该研究将数学的力量带到了从波浪中得出的清洁能量问题。海浪是永恒的清洁能源来源。通过波能转换器(WEC)收集这种能量是可持续能源议程的巨大挑战之一。已经实现了概念证​​明,目前的总体目的是以商业效率实现动力起飞(PTO),这涉及新的几何建模。我们提出的对该议程的贡献是为一类下一代浮动WECs开发基础数学,尤其是导管的波能转化器,以柔性底部形象为flexslosh wec。flexslosh wec。海面波,从其内部流体中提取能量在柔性底部地形上。灵活的底部可以利用可变形材料的新颖使用,从而实现使用分布式波纹管动作的新分布式嵌入式能量转换器技术(DEEC-TEC)。 Flexslosh WEC的基础数学基于刚性运动及其室内耗散浅水在两个水平空间,并基于基于基于两个水平的水平尺寸,以及基于基于两个水平的浅水沟渠的固定偏微分方程的普遍性 - 偏见支架公式。几何和结构保存数值分析。几何和结构保存方法,它们尊重潜在的数学结构,即特定的几何或拓扑或拓扑,以及它们求解的部分微分方程(PDE)的保护法,是新的高级数值模拟的新一代进化PDE的技术。它们的优势是强大,稳定,快速和精确的,用于对高耦合非线性系统的“长期”计算建模,这对于开发具有商业效率的波动能量的几何优化工具非常重要。系统涉及四个子系统:内部流体运动,WEC的刚体运动,弹性身体对柔性底部地形进行建模和外波动运动。该项目将集中于前三个。这些组件以独立系统的形式得出了泊松支架,拉格朗日人,哈密顿人和结构性的数值方案。动态耦合带来了新的挑战,特别是重要的是要在长期整合过程中保持正确的能量和动量分区。拟议的研究的目的是(1)为Flexslosh开发新的广义泊松支架和Casimir不变性WEC动力学,即刚体运动与其内部浅水宽度和边界耦合之间的动态耦合与柔性底部形状; (2)为长期整合耦合的非线性系统的长期整合而开发新的有限差差能和潜在的融合符合性方案。所提出的数学进步将在严格的理论和数值框架中发展波能模型的所需方面。通过开发新的连续体和离散的差别几何途径来转化海浪能,拟议的基础数学项目将有助于2050净零目标。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new physically realisable internal 1:1 resonance in the coupled pendulum-slosh system
耦合摆晃动系统中新的物理可实现的内部 1:1 共振
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hamid Alemi Ardakani其他文献

Hamid Alemi Ardakani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

流体及耦合流体方程组的数学理论
  • 批准号:
    12331007
  • 批准年份:
    2023
  • 资助金额:
    193 万元
  • 项目类别:
    重点项目
数学物理问题中正则化模型的不确定性量化分析
  • 批准号:
    12371423
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
胃癌“未病”的生物基础与数学表征
  • 批准号:
    T2341008
  • 批准年份:
    2023
  • 资助金额:
    300 万元
  • 项目类别:
    专项基金项目
高维零磁扩散磁流体力学方程组若干数学问题的研究
  • 批准号:
    12371227
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
HIV-1潜伏库治疗策略的数学建模、分析与应用
  • 批准号:
    12301627
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mathematics to underpin and drive novel inertial microfluidic technologies
数学支撑和驱动新型惯性微流体技术
  • 批准号:
    DP240101089
  • 财政年份:
    2024
  • 资助金额:
    $ 10.12万
  • 项目类别:
    Discovery Projects
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 10.12万
  • 项目类别:
Identifying and modeling immune correlates of protection against congenital CMV transmission after primary maternal infection
原发性母体感染后预防先天性巨细胞病毒传播的免疫相关性的识别和建模
  • 批准号:
    10677439
  • 财政年份:
    2023
  • 资助金额:
    $ 10.12万
  • 项目类别:
Developing Explainable AI for Equitable Risk Stratification of Atrial Fibrillation and Stroke
开发可解释的人工智能以实现心房颤动和中风的公平风险分层
  • 批准号:
    10752585
  • 财政年份:
    2023
  • 资助金额:
    $ 10.12万
  • 项目类别:
High-performance deep neural networks for medical image analysis
用于医学图像分析的高性能深度神经网络
  • 批准号:
    10723553
  • 财政年份:
    2023
  • 资助金额:
    $ 10.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了