Digitalisation for operational efficiency and GHG emission reduction at container ports
数字化可提高集装箱港口的运营效率并减少温室气体排放
基本信息
- 批准号:EP/W028492/1
- 负责人:
- 金额:$ 5.43万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ports are regarded as concentrated areas producing air pollutants and greenhouse gas (GHG) emissions. Container ports play an important role in the global economy as they handle over 50% of seaborne world trade by value. Due to surging trade volume, disruptive events, and lack of coordination across relevant stakeholders, container ports often experience inefficiency and severe congestion. Port congestion creates the requirements for extra and unproductive moves when containers are stacking or retrieving, resulting in longer turnaround times for vessels and trucks.According to the Environmental Report 2019-20 produced by the Port of Felixstowe, about 60% GHG emissions (equivalent to 34.3K tons of CO2) from port operations originate from fossil fuelled yard cranes and internal trucks. The deployed fleet of trucks travels more than 14 million km a year, consuming about 4.2 million litres of diesel fuel per year and producing 26.5K tons of CO2 per year. The fleet of cranes consumes around 6.0 million litres of diesel fuel per year and generates nearly 7.8K tons of CO2 yearly. The port acknowledges that nearly 30% crane movement is unproductive, and improvements in yard management, reducing the empty travel time, can dramatically reduce both fuel consumption and GHG emissions (potentially by 15%, i.e. 1.5 million litres of fuel and 6.1K tons of CO2). This project applies digital technologies such as machine learning and optimisation techniques to develop a new decision support system to reduce unproductive crane movement and truck travel distance. As a result, the product productivity and efficiency will be improved, more containers can be handled within time windows, and vessel and truck turnaround times will be reduced. GHG emissions from trucks, ocean-going vessels and cargo handling equipment will be reduced. The project will directly benefit container ports, by improving ocean freight efficiency. The decision support system will work as a part of a physical and digital ecosystem which will facilitate the development of maritime autonomy and support the UK's transition towards 'zero-emission' shipping. The project will also indirectly benefit other stakeholders including shipping lines, rail operators and shippers, by automating process, reducing their costs, boosting trading volume and economic growth. Our innovation focuses on: (i) the pioneering attempt to apply digital technologies to predict import containers' out-terminals at the point when they are discharged from vessels to improve stacking operations; (ii) using the ground-breaking approach of combining predictive models with prescriptive models to support yard container allocation decisions; (iii) advance the knowledge on the relative importance of determinant factors (container attributes) to predict containers' out-terminals and quantify the contributions made by each factor to the prediction. The quantifiable information will inform maritime policy making, for example, introducing appropriate regulations or incentive programs, to encourage information sharing between ports and the stakeholders, so as to improve operational efficiency and reduce GHG emissions at ports.
港口被视为空气污染物和温室气体(GHG)排放的集中区域。集装箱港口在全球经济中发挥着重要作用,按价值计算,它们处理着世界海运贸易的 50% 以上。由于贸易量激增、破坏性事件以及相关利益相关者之间缺乏协调,集装箱港口经常出现效率低下和严重拥堵的情况。港口拥堵在集装箱堆放或取回时需要额外和非生产性的移动,从而导致船只和卡车的周转时间更长。根据费利克斯托港发布的 2019-20 年环境报告,约 60% 的温室气体排放量(相当于港口作业产生的 3.43 万吨二氧化碳来自化石燃料堆场起重机和内部卡车。部署的卡车车队每年行驶超过 1,400 万公里,每年消耗约 420 万升柴油,每年产生 2.65 万吨二氧化碳。起重机车队每年消耗约 600 万升柴油,每年产生近 7800 吨二氧化碳。该港口承认,近 30% 的起重机运输是低效的,改进堆场管理、减少空载时间,可以大幅减少燃料消耗和温室气体排放(可能减少 15%,即 150 万升燃料和 6.1 万吨二氧化碳)。该项目应用机器学习和优化技术等数字技术来开发新的决策支持系统,以减少无效的起重机移动和卡车行驶距离。因此,产品生产率和效率将得到提高,可以在时间窗口内处理更多的集装箱,并且船舶和卡车的周转时间将减少。卡车、远洋船舶和货物装卸设备的温室气体排放量将减少。该项目将通过提高海运效率,直接使集装箱港口受益。该决策支持系统将作为物理和数字生态系统的一部分发挥作用,这将促进海上自治的发展并支持英国向“零排放”航运过渡。该项目还将通过流程自动化、降低成本、促进贸易量和经济增长,间接惠及包括航运公司、铁路运营商和托运人在内的其他利益相关者。我们的创新重点在于:(i)开创性尝试应用数字技术来预测进口集装箱卸船时的出港情况,以改善堆垛操作; (ii) 使用预测模型与规范模型相结合的突破性方法来支持堆场集装箱分配决策; (iii) 加深对决定因素(集装箱属性)相对重要性的认识,以预测集装箱的出港,并量化每个因素对预测的贡献。可量化的信息将为海事政策制定提供信息,例如引入适当的法规或激励计划,鼓励港口和利益相关者之间的信息共享,从而提高港口的运营效率并减少温室气体排放。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Text classification in shipping industry using unsupervised models and Transformer based supervised models
- DOI:10.48550/arxiv.2212.12407
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Yingyi Xie;Dongping Song
- 通讯作者:Yingyi Xie;Dongping Song
Predicting out-terminals of import containers at seaports through data analytics: incorporating unstructured data and measuring operational costs induced by misclassifications
通过数据分析预测海港进口集装箱的出港:纳入非结构化数据并衡量错误分类引起的运营成本
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Xie Y
- 通讯作者:Xie Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongping Song其他文献
Decentralized Supply Chain Decisions on Lead Time Quote and Pricing with a Risk-averse Supplier
与规避风险的供应商有关交货时间报价和定价的分散供应链决策
- DOI:
10.1002/mde.2804 - 发表时间:
2016 - 期刊:
- 影响因子:2.2
- 作者:
Weichun Chen;Bo Li;Dongping Song;Qinghua Li - 通讯作者:
Qinghua Li
Analysing consumer RP in a dual-channel supply chain with a risk-averse retailer
分析双渠道供应链中与规避风险的零售商的消费者RP
- DOI:
10.1504/ejie.2017.084877 - 发表时间:
2017-07 - 期刊:
- 影响因子:0
- 作者:
Yushan Jiang;Bo Li;Dongping Song - 通讯作者:
Dongping Song
Dongping Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dongping Song', 18)}}的其他基金
Establishing new collaborations with academic and industrial communities for container fleet management
与学术界和工业界建立集装箱船队管理新合作
- 批准号:
EP/F012918/1 - 财政年份:2007
- 资助金额:
$ 5.43万 - 项目类别:
Research Grant
Integrated container fleet management in transportation service systems
运输服务系统中的集装箱车队综合管理
- 批准号:
EP/E000398/1 - 财政年份:2006
- 资助金额:
$ 5.43万 - 项目类别:
Research Grant
相似国自然基金
多源异构地理分析模型互操作机制与方法研究
- 批准号:42301539
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于子空间操作的复杂间歇过程反馈优化控制方法研究
- 批准号:62373147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于Ising非局域操作调控的量子Fisher信息判定多体纠缠结构
- 批准号:12305024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非结构多场景人机协同装配任务下的操作技能迁移与生成
- 批准号:62373087
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向髓核摘除的脊柱内镜手术机器人自主操作基础理论与关键技术研究
- 批准号:62373054
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
An innovative fintech SaaS platform using ML technology that will reduce managed cloud costs by 90% and increase operational efficiency by 45%
An%20创新%20fintech%20SaaS%20平台%20使用%20ML%20技术%20that%20将%20减少%20管理%20云%20成本%20by%2090%%20和%20增加%20运营%20效率%20by%2045%
- 批准号:
10046184 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
Collaborative R&D
Vivarium Modernization with Digital Ventilated Cages to Enhance Research Capacity and Reproducibility, and Provide Cage Environment Monitoring for Improved Operational Efficiency and Animal Welfare
采用数字通风笼进行现代化改造,以提高研究能力和再现性,并提供笼环境监测,以提高运营效率和动物福利
- 批准号:
10533591 - 财政年份:2022
- 资助金额:
$ 5.43万 - 项目类别:
Research on operational efficiency and environmental load reduction of ships and land transportation in smart ports
智慧港口船舶、陆运运营效率与环境负荷降低研究
- 批准号:
21H01564 - 财政年份:2021
- 资助金额:
$ 5.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic implementation and impact evaluation of data-driven cardiac surgery triaging tools to optimize operational efficiency and enhance patient outcomes during the COVID-19 pandemic and beyond
数据驱动的心脏手术分诊工具的系统实施和影响评估,以优化运营效率并提高 COVID-19 大流行期间及之后的患者治疗效果
- 批准号:
460227 - 财政年份:2021
- 资助金额:
$ 5.43万 - 项目类别:
Operating Grants
Design and Development of a Mobile Enterprise Facilities Management and Data Analytics Platform to Enhance Functionality and Operational Efficiency
设计和开发移动企业设施管理和数据分析平台,以增强功能和运营效率
- 批准号:
561378-2020 - 财政年份:2021
- 资助金额:
$ 5.43万 - 项目类别:
Applied Research and Development Grants - Level 1