Astrocatalysis: In Operando Studies Of Catalysis And Photocatalysis Of Space-abundant Transition Metals

天体催化:空间丰富的过渡金属的催化和光催化的操作研究

基本信息

  • 批准号:
    EP/W023024/1
  • 负责人:
  • 金额:
    $ 114.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Catalysis is crucially important. It feeds us, clothes us and ensures that we are healthy. Fundamentally, catalytic processes in space may even be responsible for our very existence by generating the rich chemical environment from which chemistry evolved into biology. While we understand much of the early chemistry that occurs in cold and dark regions in space before stars and planets form and the important role of icy dust in those regions (and can observe it today in remote stars scrutinised by advanced telescopes designed to see molecules), our understanding of the true catalytic role of dust and the possibility of common catalytic chemistries employed terrestrially such a Haber-Bosch and Fischer-Tropsch is very limited.Catalysis is a key enabler in chemical synthesis and the UK, through Johnson-Matthey and others, is a leading global provider of catalytic materials and technologies. Recently, we have seen moves to more closely integrate study of fundamental catalytic processes with operational catalysis as a means of more insightful development of catalysts and catalysis. Innovation in catalysis research has increasingly focussed on (1) single atom (SA) and nano-cluster (NC) catalysts; (2) experimental investigations under catalytic operating conditions (in operando); and (3) integration of experimental data with multi-scale computational chemistry and chemical engineering coupled with artificial intelligence methods to leverage in operando simulation and discovery in catalysis. In addition, issues of sustainability are being addressed by the drive to employ Earth-abundant materials as catalysts. In considering catalytic and photocatalytic processes that might occur in space, this modern approach to catalysis has immense potential to enhance our understanding of chemical synthesis in space environments. As such, we seek to employ this approach in developing astrocatalysis; studies of catalytic processes using space-abundant materials under relevant astrophysical conditions.The UK Leadership in catalysis is recognised by EPSRC, by inclusion in its portfolio, grants currently worth £240M. A significant fraction of this investment is associated with the EPSRC-supported National Catalysis Hub based at Harwell that has enhanced UK leadership in catalysis. This programme will enhance that portfolio and develop that leadership in new directions by uniquely integrating fundamental experiments and theoretical calculations aimed at understanding heterogeneous synthesis of small organics from simple precursors as demonstrated to occur in space environments. These chemistries will use SA and NC approaches to explore Haber-Bosch and Fischer-Tropsch processes as might occur in such environments. Such studies will fundamentally inform on processes that consume at least 5% of global energy production and where tiny tweaks in the chemistry can see a significant reduction in global CO2 emissions. We will explore the role of catalysis and photocatalysis in relevant astrophysical environments in operando using space abundant transition metal (TM; Fe, Ni, Cr, and Co) single atom (SA) and nano-cluster (NC) catalysts. We will extend the known organic chemistry coupling carbon, oxygen and nitrogen and reveal aspects of the less studied, but biologically crucial, sulfur and phosphorus chemistries, under experimental conditions that reflect a variety of interstellar environments, such as Stellar Nebulae (SN), Proto-planetary Disks (PPDs) and Proto-planetary atmospheres (PPs). This work will uniquely combine experimental and computational studies to address fundamental questions of chemical evolution in space in order to improve and innovate on astrochemical and astrophysical evolutionary models from a catalysis perspective; and to deepen our understanding of practical catalysis on Earth.
催化至关重要。它为我们喂食,衣服我们并确保我们健康。从根本上讲,太空中的催化过程甚至通过产生化学演变为生物学的丰富化学环境来使我们的存在负责我们的存在。虽然我们了解在恒星和行星形成前的空间中发生在寒冷和黑暗区域中的许多早期化学反应,以及冰灰尘在这些地区的重要作用(今天可以在今天在偏远的恒星中观察到它,并在偏远的恒星中受到旨在看到分子的先进催化器的审查),但我们对尘埃的真实催化作用以及常见的催化性化学作用的理解,并且是一种常见的催化性化学作用 - 有限。催化是化学合成的关键推动剂,而英国通过约翰逊·玛特(Johnson-Matthey)等人是催化材料和技术的全球领先提供商。最近,我们已经看到,对基本催化过程进行了更紧密整合的动作催化研究,作为催化剂和催化的更深刻发展的一种手段。催化研究中的创新已经集中在(1)单原子(SA)和纳米簇(NC)催化剂上。 (2)在催化工作条件下进行的实验研究(在Operando中); (3)将实验数据与多尺度计算化学和化学工程的整合以及人工智能方法相结合,以在催化中利用操作模拟和发现中利用。此外,作为催化剂的员工土地材料的驱动力正在解决可持续性问题。在考虑可能在空间中发生的催化和光催化过程时,这种现代的催化方法具有巨大的潜力,可以增强我们对空间环境中化学合成的理解。因此,我们寻求采用这种方法来开发星形催化。在相关天体物理条件下使用太空量的材料进行催化过程的研究。EPSRC在催化中的领导才能通过纳入其投资组合,目前价值2.4亿英镑。这项投资的很大一部分与位于Harwell的EPSRC支持的民族催化中心有关,该催化枢纽已增强了英国在催化中的领导地位。该计划将通过唯一整合基本实验和旨在理解从简单的先驱物中出现在太空环境中的简单前体的小组织的异质综合的理论计算来增强该投资组合并在新方向上发展领导。这些化学家将使用SA和NC方法来探索在这种环境中可能发生的Haber-Bosch和Fischer-Tropsch过程。这些研究将从根本上告知流程,这些过程至少消耗了全球能源生产的5%,并且化学中的微小调整可以显着减少全球CO2排放。我们将使用空间丰富的过渡金属(TM; Fe,Ni,CR和CO)单原子(SA)和纳米簇(NC)催化剂来探讨催化剂和光催化在操作中相关的天体物理环境中的作用。在实验条件下,我们将扩展已知的有机化学偶联碳,氧和氮,并揭示了研究较少但在生物学上至关重要的,至关重要的,硫和磷化学的方面,这些方面反映了各种星际环境,例如多种星际环境,例如Stellar Nebulae(SN)(SN),Proto-Planetary Disk和Protos(Pps)(Pps)(Pps)(PPS)(PPS)。这项工作将独特地结合实验和计算研究,以解决空间化学演化的基本问题,以便从催化的角度改善和创新天文学和天体物理进化模型。并加深我们对地球上实际催化的理解。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-atom catalysis in space: Computational exploration of Fischer-Tropsch reactions in astrophysical environments
太空中的单原子催化:天体物理环境中费托反应的计算探索
  • DOI:
    10.1051/0004-6361/202347877
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Pareras G
  • 通讯作者:
    Pareras G
Single-atom catalysis in space: Computational exploration of Fischer Tropsch reactions in astrophysical environments
太空中的单原子催化:天体物理环境中费托反应的计算探索
  • DOI:
    10.48550/arxiv.2312.06416
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pareras G
  • 通讯作者:
    Pareras G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin McCoustra其他文献

Environmental Significance of PAH Photoproduct Formation: TiO2 Nanoparticle Influence, Altered Bioavailability, and Potential Photochemical Mechanisms.
PAH 光产物形成的环境意义:TiO2 纳米颗粒影响、改变的生物利用度和潜在的光化学机制。
  • DOI:
    10.1016/j.chemosphere.2024.142384
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Lindsey St. Mary;L. Trine;Courtney Roper;Jackson Wiley;Luca Craciunescu;Lia Sotorrios;M. Paterson;Staci L. Massey Simonich;Martin McCoustra;Theodore B. Henry
  • 通讯作者:
    Theodore B. Henry

Martin McCoustra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin McCoustra', 18)}}的其他基金

Linking Solid-State Astronomical Observations And Gas-Grain Models To Laboratory Data
将固态天文观测和气体颗粒模型与实验室数据联系起来
  • 批准号:
    ST/M00774X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Research Grant
Evolution of Ices: From Molecular Cloud to Ocean
冰的演化:从分子云到海洋
  • 批准号:
    ST/M001075/1
  • 财政年份:
    2015
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Research Grant
Probing the Astronomical Gas-Grain Interaction: Formation and Morphology of Icy Grain Materials
探索天文气体-颗粒相互作用:冰颗粒材料的形成和形态
  • 批准号:
    EP/D506158/1
  • 财政年份:
    2006
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Research Grant
NETWORK APPLICATION: A Network in Surface Science Applications in Laboratory Astrophysics
网络应用:实验室天体物理中表面科学应用的网络
  • 批准号:
    GR/T05004/02
  • 财政年份:
    2006
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Research Grant
Probing The Origins Of Chemical Complexity
探究化学复杂性的起源
  • 批准号:
    GR/T27044/02
  • 财政年份:
    2006
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Research Grant
Identification of Drug-related Compounds in Body Fluid Stains on Forensically Relevant Surfaces at Atmospheric Pressure using DESI Mass Spectrometry
使用 DESI 质谱法在大气压下鉴定法医学相关表面上体液污渍中的药物相关化合物
  • 批准号:
    EP/D036240/1
  • 财政年份:
    2006
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Research Grant
Stars R Us: the cosmic chemistry connection
Stars R Us:宇宙化学联系
  • 批准号:
    EP/E022693/1
  • 财政年份:
    2006
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Research Grant

相似国自然基金

基于氧化铟的异戊二烯高效传感材料及其气敏响应机理的operando研究
  • 批准号:
    22208292
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钛硅分子筛丙烯环氧化过程催化活性中心的operando紫外-可见共振拉曼光谱表征研究
  • 批准号:
    22272163
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
Operando同步辐射技术研究光电催化剂表面水分解机理
  • 批准号:
    11875257
  • 批准年份:
    2018
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
同步辐射operando技术研究纳米团簇的催化反应动力学行为
  • 批准号:
    U1632263
  • 批准年份:
    2016
  • 资助金额:
    230.0 万元
  • 项目类别:
    联合基金项目
光电催化过程关键中间物种的新型operando光谱研究
  • 批准号:
    21373212
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

Photocatalyst for H2 productions: in operando atomic studies
用于氢气生产的光催化剂:在操作原子研究中
  • 批准号:
    2887557
  • 财政年份:
    2023
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Studentship
Operando Studies of Electrocatalysis for Hydrogen Production Using Pioneering Vibrational Spectroscopic Techniques
使用开创性振动光谱技术进行电催化制氢的操作研究
  • 批准号:
    2860036
  • 财政年份:
    2022
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Studentship
Development of a Versatile Electrolysis Flow Cell For In Operando X-Ray Diffraction Studies
开发用于操作 X 射线衍射研究的多功能电解流动池
  • 批准号:
    2742546
  • 财政年份:
    2022
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Studentship
In-Operando Studies of Electrochemical Materials and Processes
电化学材料和过程的现场研究
  • 批准号:
    RGPIN-2018-03725
  • 财政年份:
    2022
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Discovery Grants Program - Individual
Development of operando measurement system based on ultrasoft-x-ray charged-particle-yield surface XAFS and its application to studies on catalysis
基于超软X射线带电粒子产额表面XAFS的原位测量系统研制及其在催化研究中的应用
  • 批准号:
    22H02039
  • 财政年份:
    2022
  • 资助金额:
    $ 114.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了