Lasers that Learn: AI-enabled intelligent materials processing
会学习的激光器:支持人工智能的智能材料加工
基本信息
- 批准号:EP/T026197/1
- 负责人:
- 金额:$ 99.11万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Lasers are used for an extremely wide range of manufacturing processes. This is due, in part, to their significant flexibility with respect to parameters such as pulse length, pulse energy, wavelength, and beam size. However, this flexibility comes at a price, namely the significant amount of time that must be dedicated to finding the optimal set of parameters, for each and every manufacturing process or customer specification. The standard practice in industry is the mechanical collection of laser machining data for all parameter combinations, in order to find the optimal combination of parameters. However, this process is both time-consuming and unfocussed, and it can take days or weeks, hence costing unnecessary time and money. Even when the optimal parameters have been determined, small changes, for example in laser power or beam shape, during manufacturing, can result in a final product quality that is below the required standard, once again costing time and money. There will also be instances where the specification is not known in advance due to variability in the manufacturing process. What is needed, therefore, are a series of methodologies for identifying optimal parameters before manufacturing, for providing real-time monitoring and error correction during manufacturing, and for enabling process-control (for example stopping the laser exactly at task completion, or varying the laser power for the final finishing steps).The research field of machine learning has seen some extremely significant developments in recent years, and it is now widely understood to be a catalyst for a fundamental change across almost all manufacturing industries. The objective of this proposal is to develop the technological and human expertise required for the integration of machine learning approaches into the UK laser-based manufacturing industry and the NHS. This proposal therefore seeks to leverage state-of-the-art machine learning techniques for solving well-known problems in laser-based manufacturing and materials processing, resulting in improvements in efficiency, reliability, and precision. The results of this proposal will lead to time and money savings for both the UK laser-based manufacturing industry and the NHS. This proposal will cover the application of neural networks for modelling and optimising of femtosecond laser machining, instantly identifying laser-based manufacturing parameters for any customer specification, automatically compensating for residual cavity effects in fibre lasers, enabling targeted delivery of laser light for psoriasis treatment, and laser welding process enhancement in real-time via multi-sensor data.
激光器用于极其广泛的制造工艺。这部分是由于它们在脉冲长度、脉冲能量、波长和光束尺寸等参数方面具有显着的灵活性。然而,这种灵活性是有代价的,即必须花费大量时间专门为每个制造工艺或客户规格寻找最佳参数集。行业中的标准做法是对所有参数组合的激光加工数据进行机械收集,以找到最佳的参数组合。然而,这个过程既耗时又缺乏重点,可能需要数天或数周的时间,因此浪费了不必要的时间和金钱。即使确定了最佳参数,制造过程中激光功率或光束形状等微小变化也可能导致最终产品质量低于要求的标准,再次浪费时间和金钱。也存在由于制造过程的变化而无法提前知道规格的情况。因此,我们需要一系列方法来在制造前确定最佳参数,在制造过程中提供实时监控和纠错,以及实现过程控制(例如在任务完成时准确停止激光器,或改变近年来,机器学习研究领域取得了一些极其重大的发展,现在人们普遍认为它是几乎所有制造业发生根本性变革的催化剂。该提案的目标是开发将机器学习方法集成到英国激光制造业和 NHS 所需的技术和人力专业知识。因此,该提案旨在利用最先进的机器学习技术来解决激光制造和材料加工中的众所周知的问题,从而提高效率、可靠性和精度。该提案的结果将为英国激光制造业和 NHS 节省时间和金钱。该提案将涵盖神经网络在飞秒激光加工建模和优化中的应用,立即识别任何客户规格的基于激光的制造参数,自动补偿光纤激光器中的残余腔效应,实现有针对性地传输用于牛皮癣治疗的激光,通过多传感器数据实时增强激光焊接工艺。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modelling of fibre laser cutting via deep learning.
通过深度学习对光纤激光切割进行建模。
- DOI:http://dx.10.1364/oe.432741
- 发表时间:2021
- 期刊:
- 影响因子:3.8
- 作者:Courtier AF
- 通讯作者:Courtier AF
Predictive visualization of fiber laser cutting topography via deep learning with image inpainting
通过深度学习和图像修复对光纤激光切割形貌进行预测可视化
- DOI:http://dx.10.2351/7.0000957
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Courtier A
- 通讯作者:Courtier A
Bi-frequency operation in a membrane external-cavity surface-emitting laser.
薄膜外腔表面发射激光器的双频操作。
- DOI:http://dx.10.1371/journal.pone.0289223
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Daykin J
- 通讯作者:Daykin J
Deep-Learning-Assisted Focused Ion Beam Nanofabrication.
深度学习辅助聚焦离子束纳米加工。
- DOI:http://dx.10.1021/acs.nanolett.1c04604
- 发表时间:2022
- 期刊:
- 影响因子:10.8
- 作者:Buchnev O
- 通讯作者:Buchnev O
Lensless imaging of pollen grains at three-wavelengths using deep learning
使用深度学习在三波长下对花粉粒进行无透镜成像
- DOI:10.1088/2515-7620/aba6d1
- 发表时间:2020-07-16
- 期刊:
- 影响因子:2.9
- 作者:J. Grant;M. Praeger;M. Loxham;R. Eason;B. Mills
- 通讯作者:B. Mills
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Mills其他文献
Rutaka footbridge in Rwanda: a low technology deck launch
卢旺达的 Rutaka 人行桥:低技术桥面的推出
- DOI:
10.1680/jcien.18.00045 - 发表时间:
2019-07-02 - 期刊:
- 影响因子:0
- 作者:
Ian Towler;Brandon Mills;Matthew Lofts;Benjamin Mills;Peter Crosthwaite;Divesh Mistry - 通讯作者:
Divesh Mistry
The knowledge and beliefs of hypertensive patients attending Katleho District Hospital in Free State province, South Africa, about their illness
南非自由州省卡特莱霍地区医院的高血压患者对其疾病的了解和信念
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Justin B. Mpinda;J. Tumbo;I. Govender;Benjamin Mills - 通讯作者:
Benjamin Mills
Global Natural Rates in the Long Run: Postwar Macro Trends and the Market-Implied R* in 10 Advanced Economies
长期全球自然利率:战后宏观趋势和 10 个发达经济体的市场隐含 R*
- DOI:
10.2139/ssrn.4603121 - 发表时间:
2023-10-01 - 期刊:
- 影响因子:0
- 作者:
Josh Davis;C. Fuenzalida;Leon Huetsch;Benjamin Mills;Alan M. Taylor - 通讯作者:
Alan M. Taylor
Benjamin Mills的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Mills', 18)}}的其他基金
NSFGEO-NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
NSFGEO-NERC:灾难之后:大火成岩省火山活动后的神秘排气和延迟恢复
- 批准号:
NE/Y00650X/1 - 财政年份:2024
- 资助金额:
$ 99.11万 - 项目类别:
Research Grant
SIM-EARTH: Simulating the evolution of Earth's environment
SIM-EARTH:模拟地球环境的演变
- 批准号:
EP/Y008790/1 - 财政年份:2023
- 资助金额:
$ 99.11万 - 项目类别:
Research Grant
RIFT-CC: Rifting as a driver of long-term Climate Change
RIFT-CC:裂谷是长期气候变化的驱动因素
- 批准号:
NE/X011208/1 - 财政年份:2022
- 资助金额:
$ 99.11万 - 项目类别:
Research Grant
How did the evolution of plants, microbial symbionts and terrestrial nutrient cycles change Earth's long-term climate?
植物、微生物共生体和陆地养分循环的进化如何改变地球的长期气候?
- 批准号:
NE/S009663/1 - 财政年份:2019
- 资助金额:
$ 99.11万 - 项目类别:
Research Grant
Beam-shaping for Laser-based Additive and Subtractive-manufacturing Techniques (BLAST)
用于基于激光的增材和减材制造技术 (BLAST) 的光束整形
- 批准号:
EP/N03368X/1 - 财政年份:2016
- 资助金额:
$ 99.11万 - 项目类别:
Fellowship
相似国自然基金
基于深度渐进学习的CT图像重建和多任务协同式AI辅助诊断模型研究
- 批准号:62371190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于城市形态双重表征互动学习的人工智能辅助城市设计技术
- 批准号:52308068
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于强化学习AI聊天机器人对MSM开展PrEP服药依从性精准干预模式探索及干预效果研究
- 批准号:82373638
- 批准年份:2023
- 资助金额:59 万元
- 项目类别:面上项目
基于弱监督及迁移学习优化肝细胞结节AI病理诊断模型并探讨模型可解释性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
共享平台用户可持续消费行为与平台绩效研究——基于人工智能、机器学习与计量经济学的方法
- 批准号:72272075
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
CAREER: "Adapt, Learn, Collaborate" — Closing the Pervasive Edge AI Loop with Liquid Intelligence
职业生涯:“适应、学习、协作”——利用液态智能关闭普遍的边缘人工智能循环
- 批准号:
2146421 - 财政年份:2022
- 资助金额:
$ 99.11万 - 项目类别:
Continuing Grant
FW-HTF-RL: Collaborative Research: Enabling Marginalized Rural and Urban Digital Workers to Collaborate with AI to Learn Skills, Increase Wages, and Access Creative Work
FW-HTF-RL:合作研究:让边缘化的农村和城市数字工人能够与人工智能合作学习技能、增加工资并获得创造性工作
- 批准号:
2203212 - 财政年份:2022
- 资助金额:
$ 99.11万 - 项目类别:
Standard Grant
Development of tracking integrated Raman spectroscopy to measure myosin state distribution in a sarcomere under physiological environment
开发追踪集成拉曼光谱测量生理环境下肌节肌球蛋白状态分布
- 批准号:
20K15762 - 财政年份:2020
- 资助金额:
$ 99.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Learn From The Best: training AI using biological expert attention
向最优秀的人学习:利用生物专家的注意力训练人工智能
- 批准号:
BB/T012129/1 - 财政年份:2020
- 资助金额:
$ 99.11万 - 项目类别:
Research Grant
FW-HTF-RL: Collaborative Research: Enabling Marginalized Rural and Urban Digital Workers to Collaborate with AI to Learn Skills, Increase Wages, and Access Creative Work
FW-HTF-RL:合作研究:让边缘化的农村和城市数字工人能够与人工智能合作学习技能、增加工资并获得创造性工作
- 批准号:
1928507 - 财政年份:2019
- 资助金额:
$ 99.11万 - 项目类别:
Standard Grant