Earth-abundant catalysts and novel layered 2D perovskites for solar water splitting (H2CAT)
地球上丰富的催化剂和新型层状二维钙钛矿用于太阳能水分解(H2CAT)
基本信息
- 批准号:EP/V012932/1
- 负责人:
- 金额:$ 151.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Committee on Climate Change concluded that clean hydrogen production was essential for meeting UK's goal of net zero carbon emission by 2050. Of the 27 TWh of hydrogen produced per annum in the UK, only 1TWh of comes from direct electrolysis of water using renewable energy sources. The production of truly clean hydrogen using renewable sources requires a step change in the materials and device development. Moreover, the state-of-the-art methods utilizing renewable energy for production of hydrogen rely on expensive catalysts such as platinum, ruthenium and iridium. Thus, there is an urgent need to for reducing reliance on resource limited materials. According to a recent strategic document on clean production of hydrogen developed by the Sir Henry Royce Institute (SHRI), photochemical methods for clean production of hydrogen offer an attractive strand for high risk/high reward research activity for the UK. The SHRI suggests that for solar to hydrogen to be viable, an increase in efficiency from 1% to 10 - 15% is required through development of new catalysts and photo-electrode materials. High efficiency PEC cells for water splitting could be disruptive and the UK is in a world leading position to realize and translate this technology. To reap the benefits of PEC cells for clean hydrogen production, fundamental limitations of long-term stability of photo-electrodes with band gaps between 1 - 2 eV must be overcome. A photochemical cell typically uses semiconductor/liquid, which depending on the band-edge position can initiate HER or OER or both, whereas in a PEC, the semiconductor is usually a wide band-gap material that also serves as the photocatalyst. For photochemical cells, a mandatory requirement is for the semiconductor to be stable in aqueous media and this is a key challenge. On the other hand, PECs employing wide band-gap catalysts are stable but the efficiency is around 1%, thus making them impractical for large scale generation of hydrogen. This proposal aims to pioneer photo-electrodes (cathodes and anodes) that overcome the current limitations using layered 2D halide perovskites as extremely efficient light absorbers and voltage sources - with the motivation to understand key processes that underpin their stability so that devices with unprecedented energy efficiency and performance can be realized. The proposal builds on our recent breakthroughs in HER and OER catalysts (Science 2016, Nature Materials 2019) as well as pioneering work in efficient and stable hybrid perovskite solar cells (Nature, 2018 & 2020). It also builds on strategic investments in the Materials for Energy Transition theme at Cambridge through the SHRI. Our ambition is to achieve band gap tunable layered 2D perovskites with ideal band offsets that are electronically coupled to inexpensive and earth abundant HER and OER catalysts through mechanical/environmental barriers that will address and overcome the long-standing challenge of realizing high efficiency PEC cells with simple device design. The proposed work will underpin and impact ongoing programmes and initiatives aligned with several EPSRC priority areas in energy materials. This includes adaptation operando characterization of catalyst materials, 2D materials and stable operation of perovskites for solar cells. This proposal aims to bring a step-change and establish an internationally leading programme in solar production of hydrogen using high- performance PEC cells based on two-dimensional catalyst materials and hybrid perovskites as photo-electrodes that will add value and connect a broad range of communities. The proposed work will open up new pathways for achieving in-depth fundamental knowledge of physics of novel devices based on 2D and hybrid perovskite materials to accelerate their development towards technological readiness and commercialization in higher value-added products.
气候变化委员会得出的结论是,清洁氢的产量对于达到英国到2050年的净碳排放目标至关重要。使用可再生能源的真正清洁氢的生产需要材料和设备开发的步骤更改。此外,利用可再生能源生产氢的最先进方法依赖于昂贵的催化剂,例如铂,钌和虹膜。因此,迫切需要减少对资源有限材料的依赖。根据亨利·罗伊斯爵士(SHRI)开发的关于清洁氢生产的最新战略文件,用于清洁氢生产的光化学方法为英国提供了高风险/高奖励研究活动的吸引力。 SHRI建议,要使太阳能到氢的可行性,通过开发新的催化剂和光电极材料,需要将效率从1%提高到10-15%。高效率PEC细胞进行水分流可能会破坏性,英国在世界领先地位,可以实现和翻译这项技术。为了获得PEC细胞对清洁氢产生的好处,必须克服具有带隙的光电极长期稳定性的基本局限性。光化学电池通常使用半导体/液体,根据频带边缘位置可以启动她或OER或两者兼而有之,而在PEC中,半导体通常是一种宽带隙材料,也是光催化剂的宽带隙材料。对于光化学细胞,强制性要求是半导体在水性介质中保持稳定,这是一个关键挑战。另一方面,使用宽带隙催化剂的PEC稳定,但效率约为1%,因此对于大规模生成的氢而言,它们是不切实际的。该提案旨在先开拓光电子(阴极和阳极),以使用分层的2D卤化物钙钛矿作为极有效的光吸收器和电压来源来克服当前局限性 - 并具有了解其稳定性的关键过程,从而使设备具有前所未有的能源效率和性能。该提案建立在我们最近在她和OER催化剂中的突破(科学,2016年,自然材料2019),以及在高效且稳定的混合钙钛矿太阳能电池方面的开创性工作(Nature,2018年和2020年)。它还基于剑桥通过Shri的能源过渡主题的战略投资。我们的野心是通过机械/环境障碍,通过电子耦合与廉价和地球的廉价和地球丰富的型带子偏移,通过机械/环境屏障将其丰富与廉价的催化剂实现带隙的层间层状perovskites,通过机械/环境障碍,将解决并克服长期的挑战,即实现高效PEC PEC细胞与简单设备设计。拟议的工作将支持并影响正在进行的计划,并与能源材料的几个EPSRC优先领域保持一致。这包括对催化剂材料,2D材料的适应性操作表征以及对太阳能电池的钙钛矿的稳定操作。该提案旨在基于二维催化剂材料和混合钙钛矿作为光电极,以增加价值并连接广泛的社区。拟议的工作将开辟新的途径,以实现基于2D和混合钙钛矿材料的新型设备物理学的深入基本知识,以加速其发展,以在高增值产品中进行技术准备和商业化。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extracting Decay-Rate Ratios From Photoluminescence Quantum Efficiency Measurements in Optoelectronic Semiconductors
从光电半导体中的光致发光量子效率测量中提取衰减率
- DOI:10.1103/physrevapplied.17.044026
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Bowman A
- 通讯作者:Bowman A
Substitution of lead with tin suppresses ionic transport in halide perovskite optoelectronics.
- DOI:10.1039/d3ee03772j
- 发表时间:2024-01-23
- 期刊:
- 影响因子:32.5
- 作者:Dey, Krishanu;Ghosh, Dibyajyoti;Pilot, Matthew;Pering, Samuel R.;Roose, Bart;Deswal, Priyanka;Senanayak, Satyaprasad P.;Cameron, Petra J.;Islam, M. Saiful;Stranks, Samuel D.
- 通讯作者:Stranks, Samuel D.
Ultrahigh Pt-Mass-Activity Hydrogen Evolution Catalyst Electrodeposited from Bulk Pt
- DOI:10.1002/adfm.202112207
- 发表时间:2022-02-18
- 期刊:
- 影响因子:19
- 作者:Liu, Luan;Wang, Yan;Qin, Mingli
- 通讯作者:Qin, Mingli
Tunable Multiband Halide Perovskite Tandem Photodetectors with Switchable Response.
具有可切换响应的可调谐多波段卤化物钙钛矿串联光电探测器。
- DOI:10.17863/cam.92108
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Moseley O
- 通讯作者:Moseley O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manish Chhowalla其他文献
化学的剥離によるWS2ナノシートの作製と水素発生反応触媒特性
化学剥离制备WS2纳米片及其催化产氢反应性能
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
藤田 武志;陳 明偉;Damien Voiry;山口尚登;Manish Chhowalla;江田 剛輝 - 通讯作者:
江田 剛輝
化学的剥離によるWS_2ナノシートの作製と水素発生反応触媒特性
化学剥离制备WS_2纳米片及其产氢反应催化性能
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
藤田武志;陳明偉;Damien Voiry;山口尚登;Manish Chhowalla;江田剛輝 - 通讯作者:
江田剛輝
Manish Chhowalla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manish Chhowalla', 18)}}的其他基金
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
- 批准号:
EP/Y028287/1 - 财政年份:2024
- 资助金额:
$ 151.61万 - 项目类别:
Fellowship
Demonstrating large-scale and high-performance lithium-sulfur batteries
展示大规模高性能锂硫电池
- 批准号:
EP/Y036735/1 - 财政年份:2023
- 资助金额:
$ 151.61万 - 项目类别:
Research Grant
Low Resistance Contacts on Atomically Thin Body Semiconductors for Energy Efficient Electronics (LoResCon)
用于节能电子产品的原子薄体半导体上的低电阻触点 (LoResCon)
- 批准号:
EP/T026200/1 - 财政年份:2020
- 资助金额:
$ 151.61万 - 项目类别:
Research Grant
Graphene 2014 Conference at Rutgers University, New Brunswick May 6-9, 2014
石墨烯 2014 年会议,新不伦瑞克罗格斯大学,2014 年 5 月 6-9 日
- 批准号:
1442698 - 财政年份:2014
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
Electrodes for Large Area Electronics Based on Partially Oxidized Graphene
基于部分氧化石墨烯的大面积电子电极
- 批准号:
1128335 - 财政年份:2011
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
IGERT: Nanotechnology for Clean Energy
IGERT:清洁能源纳米技术
- 批准号:
0903661 - 财政年份:2009
- 资助金额:
$ 151.61万 - 项目类别:
Continuing Grant
CAREER: Organic Memory Devices Based on Insulating Polymers and C60 Fullerene Molecules
职业:基于绝缘聚合物和 C60 富勒烯分子的有机存储器件
- 批准号:
0543867 - 财政年份:2006
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
GOALI: Investigation of Structure and Properties of Si Doped Boron Carbide
GOALI:硅掺杂碳化硼的结构和性能研究
- 批准号:
0604314 - 财政年份:2006
- 资助金额:
$ 151.61万 - 项目类别:
Continuing Grant
Single Wall Carbon Nanotube Architectures for Molecular-Scale Spin Injection Devices
用于分子级自旋注入装置的单壁碳纳米管结构
- 批准号:
0400501 - 财政年份:2004
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
相似国自然基金
兰科吻兰族的系统学研究及其区域丰富度差异成因探讨
- 批准号:32360063
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于NKA/GLT-1通路探讨丰富环境抑制缺血性脑损伤兴奋性毒性的机制研究
- 批准号:82360455
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
多模态大模型预训练中的模态增广问题研究
- 批准号:62372314
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
亮氨酸丰富结构蛋白LRRC71通过促进AR进核介导前列腺癌雄激素非依赖性生长的分子机制研究
- 批准号:82373031
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
接触丰富的零部件装配动态力-位图像学习理论及控制方法
- 批准号:52375519
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Creation of a Membraneless Protocell with Earth-abundant Transition Metal Catalysts
使用地球丰富的过渡金属催化剂创建无膜原始细胞
- 批准号:
24K17795 - 财政年份:2024
- 资助金额:
$ 151.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
LEAPS-MPS Discovery of Earth-abundant Transition-metal Catalysts for Small Molecule Functionalization and Mechanistic Insights
LEAPS-MPS 发现地球丰富的过渡金属催化剂,用于小分子功能化和机理见解
- 批准号:
2316526 - 财政年份:2023
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
Sustainable fuel production through earth abundant catalysts
通过地球上丰富的催化剂可持续生产燃料
- 批准号:
RGPIN-2018-06744 - 财政年份:2022
- 资助金额:
$ 151.61万 - 项目类别:
Discovery Grants Program - Individual
CAS: Bimetallic Transition Metal Phosphide Nanostructures as High-Efficiency, Earth-Abundant, and Durable Catalysts for Electrochemical Water Splitting
CAS:双金属过渡金属磷化物纳米结构作为高效、地球丰富且耐用的电化学水分解催化剂
- 批准号:
2154747 - 财政年份:2022
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
Earth-abundant Heterogeneous Catalysts for the Synthesis of Renewable Fuels
地球丰富的多相催化剂用于合成可再生燃料
- 批准号:
RGPIN-2021-03162 - 财政年份:2022
- 资助金额:
$ 151.61万 - 项目类别:
Discovery Grants Program - Individual