CAS: Bimetallic Transition Metal Phosphide Nanostructures as High-Efficiency, Earth-Abundant, and Durable Catalysts for Electrochemical Water Splitting
CAS:双金属过渡金属磷化物纳米结构作为高效、地球丰富且耐用的电化学水分解催化剂
基本信息
- 批准号:2154747
- 负责人:
- 金额:$ 42.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis program in the Division of Chemistry, Professors Indika Arachchige and Ka Un Lao of the Virginia Commonwealth University are studying the fundamental properties of metal phosphide nanoparticles as effective catalysts for splitting water into environmentally friendly hydrogen and oxygen fuel. The inexpensive generation of hydrogen from water using electricity (electrochemical water splitting) would provide an abundant source of renewable fuel. Currently, the most active catalysts used in water splitting are comprised of expensive and rare metals such as platinum. This project will develop new chemical syntheses to produce efficient catalysts from metal phosphides that are less expensive and abundant. The activity of the phosphide catalysts is improved by modifying the surface of the particles by incorporating multiple metal atoms. The research team combines synthesis and catalysis expertise with quantum chemistry calculations and artificial intelligence to garner a thorough understanding of the effects of particle size, shape, and composition on key catalytic properties and chemical stability. The collaborative nature of this project provides multidisciplinary training and mentoring for graduate and undergraduate students, to develop skills in catalyst design and synthesis, computational chemistry, and nanoscience. The summer outreach to Richmond Public Schools exposes K-12 students to cutting-edge nanochemistry and catalysis projects, and develops age-appropriate nanoscience educational modules impacting hundreds of underrepresented minority students.Electrocatalysis enabled water splitting presents an exciting opportunity to produce environmentally benign fuel to power human activities. Transition metal phosphides (TMPs) have emerged as earth abundant catalysts for water electrolysis and their activity can be enormously augmented by admixing synergistic metals to modify the surface affinity and the kinetics and mechanisms of hydrogen (HER) and oxygen evolution (OER) reactions. Underpinning their efficient application is the ability to rationally and predictably achieve precisely controlled catalyst features, including specific catalyst structures, surface facets, morphologies, and compositions, that directly impact the HER/OER activity, stability, and durability. The objective of this program is to exploit a comprehensive theoretical and experimental approach to produce bimetallic TMP nanostructures with control over intrinsic features as high efficiency electrocatalysts for HER and OER. A series of TMP nanostructures having various sizes, compositions, and morphologies are produced by colloidal chemistry methods. The influences of synergistic metal alloying on charge distribution, ion adsorption, oxidation/reduction kinetics and mechanisms, and stability are thoroughly probed with experiments guided by density functional theory simulations and machine learning models. The theory-guided experiments are designed to probe specific catalyst structures, crystal facets, surface terminations, and compositions that show superior water splitting activity and stability, which are correlated to underlying kinetics and mechanisms of HER and OER. These efforts reveal the fundamental influences of simultaneous control over nanostructure, crystal facets, morphology, and composition on water splitting activity and develop roadmaps that guide researchers to produce highly efficient, robust TMP nanocatalysts for the rational design of electrochemical reactors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学催化计划中的化学秘诀的支持下,弗吉尼亚联邦大学的Indika Arachchige教授和Ka Un Lao正在研究金属磷化物纳米颗粒的基本特性,是将水拆分为环境友好型氢和氧气和氧气和氧气燃料的有效催化剂。使用电力(电化学水分)从水中廉价的氢产生将提供丰富的可再生燃料来源。目前,水分流中使用的最活跃的催化剂包括昂贵且稀有的金属,例如铂金。该项目将开发新的化学合成,从而从较便宜且丰富的金属磷化物中产生有效的催化剂。通过结合多个金属原子来修饰颗粒的表面,可以改善磷化物催化剂的活性。研究团队将合成和催化专业知识与量子化学计算和人工智能相结合,以彻底了解粒径,形状和组成对关键催化特性和化学稳定性的影响。该项目的协作性质为研究生和本科生提供了多学科培训和指导,以发展催化剂设计和合成,计算化学和纳米科学方面的技能。夏季向里士满公立学校的宣传使K-12学生暴露于尖端的纳米化学和催化项目,并开发出适合年龄的纳米统计学教育模块,影响数百名代表性不足的少数族裔学生。电子剖析使剥水启动的机会启动了激动人心的机会,以产生环境,从而产生环境的燃料燃料燃料燃料燃料燃料燃料燃料燃料燃料燃料燃料燃料燃料燃料燃料燃料燃料,权力人类活动。过渡金属磷化物(TMP)已作为用于水电解的大量催化剂出现,并且可以通过混合协同金属来大大增强其活性,从而改变表面亲和力,以及氢(她)和氧气进化(OER)反应的表面亲和力和动力学和机制。支撑其有效应用的基础是能够合理和可预测地获得精确控制的催化剂特征,包括特定的催化剂结构,表面面,形态和组成,直接影响她/OER活动,稳定性和耐用性。该计划的目的是利用一种全面的理论和实验方法来生产双金属TMP纳米结构,以控制固有特征作为她和OER的高效率电催化剂。一系列具有各种大小,组成和形态的TMP纳米结构是通过胶体化学方法产生的。通过密度功能理论模拟和机器学习模型指导的实验,可以彻底探测协同金属合金合金合金对电荷分布,离子吸附,氧化/还原动力学和机制的影响。理论指导的实验旨在探测特定的催化剂结构,晶体面,表面终止以及表现出优质水分裂活性和稳定性的组成,这与她和她的基础动力学和机制相关。这些努力揭示了同时控制纳米结构,水晶面,形态和对水分割活动的组成,并开发了路线图,并指导研究人员生成高效,强大的TMP纳米催化剂,以实现电化学反应堆的合理设计。使命,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准通过评估值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Indika Arachchige其他文献
Indika Arachchige的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Indika Arachchige', 18)}}的其他基金
Low-Dimensional Si-Sn and Si-Ge-Sn Nanoalloys as High-Efficiency, Direct-gap Nanostructures for Visible to Infrared Optoelectronics.
低维 Si-Sn 和 Si-Ge-Sn 纳米合金作为高效、直接带隙纳米结构,用于可见光到红外光电器件。
- 批准号:
2211606 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
REU Site: Practices and Perspectives in Nanoscience and Chemical Biology
REU 网站:纳米科学和化学生物学的实践和观点
- 批准号:
1851916 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
SusChEM: Synthesis and Structure-Property Elucidation of Direct-Bandgap Group IV Alloy Nanocrystals for Optoelectronic Applications
SusChEM:用于光电应用的直接带隙 IV 族合金纳米晶体的合成和结构性能阐明
- 批准号:
1506595 - 财政年份:2015
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
相似国自然基金
过渡双金属Yolk@Shell结构纳米材料的可控构筑及其电催化大电流密度下5-羟甲基糠醛氧化的性能研究
- 批准号:22308298
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过渡-镧系异核双金属内嵌富勒烯的制备及其金属-金属键的研究
- 批准号:22301288
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过渡金属-铱基双金属复合催化剂的结构调控及其电化学海水裂解性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钛族金属与廉价过渡金属的双金属协同研究
- 批准号:22171026
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
MOFs衍生过渡双金属硫化物核壳异质结的可控构筑及储钠性能研究
- 批准号:52002227
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
CAS: Investigations of Monometallic, Bimetallic and Dual-Anion Transition Metal X-ide Water Oxidation Electrocatalysts
CAS:单金属、双金属和双阴离子过渡金属X-IDE水氧化电催化剂的研究
- 批准号:
2102307 - 财政年份:2021
- 资助金额:
$ 42.94万 - 项目类别:
Continuing Grant
New Approaches to Catalysis: Dual Nucleophilic/Transition Metal Catalysis and Bimetallic Cu Catalysts for Oxidative Functionalizations
催化新方法:双亲核/过渡金属催化和用于氧化功能化的双金属铜催化剂
- 批准号:
RGPIN-2014-05988 - 财政年份:2018
- 资助金额:
$ 42.94万 - 项目类别:
Discovery Grants Program - Individual
Mono- and Bimetallic Cyclometalated Transition Metal NHC Complexes
单金属和双金属环金属化过渡金属 NHC 配合物
- 批准号:
404370927 - 财政年份:2018
- 资助金额:
$ 42.94万 - 项目类别:
Priority Programmes
New Approaches to Catalysis: Dual Nucleophilic/Transition Metal Catalysis and Bimetallic Cu Catalysts for Oxidative Functionalizations
催化新方法:双亲核/过渡金属催化和用于氧化功能化的双金属铜催化剂
- 批准号:
RGPIN-2014-05988 - 财政年份:2017
- 资助金额:
$ 42.94万 - 项目类别:
Discovery Grants Program - Individual
New Approaches to Catalysis: Dual Nucleophilic/Transition Metal Catalysis and Bimetallic Cu Catalysts for Oxidative Functionalizations
催化新方法:双亲核/过渡金属催化和用于氧化功能化的双金属铜催化剂
- 批准号:
RGPIN-2014-05988 - 财政年份:2016
- 资助金额:
$ 42.94万 - 项目类别:
Discovery Grants Program - Individual