Optoelectronic properties of hybrid metal halide perovskites: from nanoscale to devices

杂化金属卤化物钙钛矿的光电特性:从纳米级到器件

基本信息

  • 批准号:
    EP/V001302/1
  • 负责人:
  • 金额:
    $ 48.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Anthropogenic climate change is currently one of the biggest challenges facing our society. In order to mitigate the detrimental effects of burning fossil fuels and releasing CO2 into the atmosphere, we must switch to clean, renewable sources as quickly as possible. Solar energy is one of the most promising options available because it has the potential to completely meet our entire global energy requirements. Although the solar energy industry has seen rapid development in recent years, challenges still remain to increase the efficiency of photovoltaic devices while decreasing or maintaining costs. Hybrid metal halide perovskite thin films are promising materials for achieving these goals as high efficiency devices which rival existing technology can be easily synthesized via solution processing methods using inexpensive, earth-abundant materials. However, current state-of-the-art perovskite materials struggle to maintain long-term stability under ambient conditions. Two-dimensional, Ruddlesden-Popper phase perovskites have demonstrated superior stability, and have thus attracted much attention in the perovskite community, although photovoltaic devices made with these materials have not been able to achieve the same high efficiencies as their 3D counterparts. As it is currently unknown whether this inefficiency is due to intrinsic limitations of the material or to extrinsic factors fixable with improved processing procedures, a comprehensive study of the fundamental optoelectronic properties in these materials is desperately needed. This research will fill this knowledge gap by fully characterizing the optoelectronic properties of 2D perovskites in order to determine their ultimate viability for use in solar cells. This task is far from straightforward, however, as many competing factors can limit efficient charge transport in these materials. In addition to exhibiting high exciton binding energies, 2D perovskites also demonstrate increased doping density and decreased crystallinity associated with their thin-film microstructure, all of which previous work has shown to limit charge-carrier diffusion lengths (Milot et al, Nano Lett, 2016). The challenge for understanding the optoelectronic properties in these materials is being able to isolate the effects of the intrinsic properties (e.g excitonic effects) from extrinsic properties such as doping density and crystallinity which could be altered with improved processing methods. As many of the extrinsic properties can further change with incorporation into solar cells, this problem is nontrivial. To address this issue, this research will pioneer a new approach by studying optoelectronic properties from single crystals to devices in order to gain a full picture of intrinsic properties and determine how they are affected by extrinsic factors including microstructure and solar cell inclusion. To best enable comparisons, it will utilize THz and photoluminescence (PL) spectroscopy, two of the most versatile techniques for the analysis of optoelectronic properties including charge-carrier mobility and recombination dynamics. It will further harness the versatility of these two techniques by combining THz scattering near-field optical microscopy (THz-SNOM) and time-resolved PL microscopy analyses for the first time, adding the capability of nanoscale spatial resolution to the existing capabilities for ultrafast time resolution. Through comparison with conventional measurements of photovoltaic power conversion efficiencies, it will identify pathways to improvement in device fabrication. The greater understanding of the optoelectronic properties of 2D perovskites that this research presents will lead directly to the development of high efficiency solar cells to meet our energy needs.
人为气候变化是当前我们社会面临的最大挑战之一。为了减轻燃烧化石燃料和向大气中释放二氧化碳的有害影响,我们必须尽快转向清洁的可再生能源。太阳能是最有前途的选择之一,因为它有潜力完全满足我们整个全球的能源需求。尽管近年来太阳能产业取得了快速发展,但在降低或维持成本的同时提高光伏器件的效率仍然存在挑战。混合金属卤化物钙钛矿薄膜是实现这些目标的有前途的材料,因为可以使用廉价、地球丰富的材料通过溶液加工方法轻松合成可与现有技术相媲美的高效器件。然而,当前最先进的钙钛矿材料很难在环境条件下保持长期稳定性。二维 Ruddlesden-Popper 相钙钛矿表现出优异的稳定性,因此引起了钙钛矿界的广泛关注,尽管用这些材料制成的光伏器件尚未能够达到与 3D 同类材料相同的高效率。由于目前尚不清楚这种低效率是由于材料的内在限制还是由于可通过改进加工程序修复的外在因素,因此迫切需要对这些材料的基本光电特性进行全面研究。这项研究将通过全面表征二维钙钛矿的光电特性来填补这一知识空白,以确定其在太阳能电池中使用的最终可行性。然而,这项任务远非直截了当,因为许多竞争因素可能会限制这些材料中的有效电荷传输。除了表现出高激子结合能之外,2D 钙钛矿还表现出与薄膜微结构相关的掺杂密度增加和结晶度降低,所有这些先前的工作已表明限制电荷载流子扩散长度(Milot 等人,Nano Lett,2016) )。了解这些材料的光电特性的挑战是能够将内在特性(例如激子效应)的影响与掺杂密度和结晶度等外在特性分开,这些特性可以通过改进的加工方法来改变。由于许多外在特性会随着并入太阳能电池而进一步改变,因此这个问题并不重要。为了解决这个问题,本研究将开创一种新方法,通过研究从单晶到器件的光电特性,以获得内在特性的全貌,并确定它们如何受到微观结构和太阳能电池内含物等外在因素的影响。为了最好地进行比较,它将利用太赫兹和光致发光(PL)光谱,这是分析光电特性(包括载流子迁移率和复合动力学)最通用的两种技术。它将进一步利用这两种技术的多功能性,首次将太赫兹散射近场光学显微镜(THz-SNOM)和时间分辨PL显微镜分析相结合,在现有的超快时间能力的基础上增加纳米级空间分辨率的能力解决。通过与光伏电力转换效率的传统测量进行比较,它将确定改进设备制造的途径。这项研究提出的对二维钙钛矿光电特性的更深入了解将直接导致高效太阳能电池的开发,以满足我们的能源需求。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Terahertz Generation via Optical Rectification in Halide Perovskites
Charge-Carrier Dynamics in Mixed Lead-Tin 2D/3D Metal Halide Perovskites
混合铅锡 2D/3D 金属卤化物钙钛矿中的载流子动力学
  • DOI:
    10.1109/irmmw-thz57677.2023.10299231
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hutchinson J
  • 通讯作者:
    Hutchinson J
Layered Perovskites in Solar Cells: Structure, Optoelectronic Properties, and Device Design
  • DOI:
    10.1002/aenm.202003877
  • 发表时间:
    2021-05-19
  • 期刊:
  • 影响因子:
    27.8
  • 作者:
    Sirbu, Dumitru;Balogun, Folusho Helen;Docampo, Pablo
  • 通讯作者:
    Docampo, Pablo
Untangling free carrier and exciton dynamics in layered hybrid perovskites using ultrafast optical and terahertz spectroscopy
  • DOI:
    10.1088/2053-1591/ad14c2
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Balogun,Folusho Helen;Gallop,Nathaniel P.;Milot,Rebecca L.
  • 通讯作者:
    Milot,Rebecca L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rebecca Milot其他文献

Rebecca Milot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rebecca Milot', 18)}}的其他基金

Shining Light on Metal Halide Perovskite Stability with Nanoscale Optical Characterization
通过纳米级光学表征揭示金属卤化物钙钛矿的稳定性
  • 批准号:
    EP/X014673/1
  • 财政年份:
    2023
  • 资助金额:
    $ 48.79万
  • 项目类别:
    Research Grant

相似国自然基金

植被群落演替对河道水流结构和纵向离散特性影响机制研究
  • 批准号:
    52309088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于液态金属弹性体的磁/温控导体绝缘体转变特性和机理研究
  • 批准号:
    52301193
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
根际固氮菌类群的功能特性及其残体对土壤有机碳周转的影响机制
  • 批准号:
    42377127
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
层工程诱导的Bi5Ti3FeO15基弛豫铁电薄膜储能特性研究
  • 批准号:
    12364016
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
深层高温高压页岩水力压裂特性与诱发地震机理研究
  • 批准号:
    42320104003
  • 批准年份:
    2023
  • 资助金额:
    210 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

CAREER: Modulating Optoelectronic Properties and Functionality of Hybrid Organic-Inorganic Semiconductors by Controlling Lattice Strain with Molecular Interactions at Surfaces
职业:通过表面分子相互作用控制晶格应变来调节有机-无机杂化半导体的光电特性和功能
  • 批准号:
    2237211
  • 财政年份:
    2023
  • 资助金额:
    $ 48.79万
  • 项目类别:
    Continuing Grant
A-site Modified Hybrid Perovskites: Compositional Engineering and Role of Grain Boundaries on Optoelectronic Properties (ASTRAL)
A 位改性杂化钙钛矿:成分工程和晶界对光电性能的作用 (ASTRAL)
  • 批准号:
    423745771
  • 财政年份:
    2019
  • 资助金额:
    $ 48.79万
  • 项目类别:
    Priority Programmes
US-France Cooperative Research: Controlled Optoelectronic Properties of Hybrid Dioxythiophene Polymers
美法合作研究:杂化二氧噻吩聚合物的可控光电特性
  • 批准号:
    0339735
  • 财政年份:
    2004
  • 资助金额:
    $ 48.79万
  • 项目类别:
    Standard Grant
dry film processing of hybrid perovskites with tailored optoelectronic properties
具有定制光电特性的混合钙钛矿的干膜加工
  • 批准号:
    434342094
  • 财政年份:
  • 资助金额:
    $ 48.79万
  • 项目类别:
    Research Grants
Hybrid graphene/III-V system selectively grown on Si nanotips: A correlation study of structural and optoelectronic properties
在硅纳米尖端上选择性生长的杂化石墨烯/III-V族系统:结构和光电特性的相关研究
  • 批准号:
    428250328
  • 财政年份:
  • 资助金额:
    $ 48.79万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了