Next Generation Fibre-Reinforced Composites: a Full Scale Redesign for Compression
下一代纤维增强复合材料:全面重新设计压缩
基本信息
- 批准号:EP/T011653/1
- 负责人:
- 金额:$ 790.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High performance fibre-reinforced polymer composites are the current state-of-the-art for lightweight structures and their use is rising exponentially in a wide range of applications from aerospace to sporting goods. They offer outstanding mechanical properties: high strength and stiffness, low weight, and low susceptibility to fatigue and corrosion. The use of high strength, high stiffness materials in fibre form mitigates the tendency for premature brittle failure, enables components to be formed at low or moderate temperatures, and enables anisotropic designs to target the primary load-carrying demands. Fibres are particularly efficient in uniaxial tension but, under compression, composites suffer a range of failures typically associated with fibre micro-buckling or kinking, linked to matrix or interfacial issues; these mechanisms couple in a complicated way at a variety of physical lengthscales. Often, these types of failure determine the practical usage of composites and set design limits well below the expected intrinsic performance of the constituent fibres. On the other hand, new constituents and processes are becoming available that enable the directed assembly of composite structures, controlled across a much wider range of lengthscales than previously possible. In principle, then, composite materials should be redesigned to take advantage of these opportunities to supress or redirect the failure process in compression. Natural materials, such as wood and bone, are fully hierarchical, with precise structural features resolved at every possible magnification. Artificial composites lack this dexterity but can exploit intrinsically superior constituents. The increasing ability to visualise, calculate, and control structures, including with quantitative precision, will allow a new generation of composite materials to be developed. The ambition is to realise the full intrinsic potential of the fibres by designing such hierarchical systems for compression, from first principles, exploiting the latest developments in materials, processing, characterisation, and modelling of mechanistic processes.This programme focusses on the challenge of improving the absolute performance of composites in compression, both to address practical limitations of current materials, and as a demonstration of the value of quantitative hierarchical materials design. Tools and materials developed during this programme will be useful in a range of other contexts. The work will develop and embed structure at every lengthscale from the molecules of the matrix, to the lay-up of final components, using new constituents and new architectures, designed with a new analytical framework. The programme will benefit from a highly creative and interdisciplinary approach amongst the core project term, amplified by contributions from leading international advisors and collaborators. An extensive group of industrial partners will contribute to the project, and help to develop the outputs, building on concept demonstrators designed during the programme. The scientific and technical results will be widely disseminated nationally and internationally, helping to ensure UK leadership in this key field.
高性能纤维增强的聚合物复合材料是轻量化结构的当前最新面积,它们的使用在从航空航天到体育用品的广泛应用中呈指数增长。它们提供了出色的机械性能:高强度和刚度,低重量以及对疲劳和腐蚀的敏感性低。纤维形式中高强度,高刚度材料的使用减轻了过早易碎故障的趋势,使组件能够在低或中等温度下形成,并使各向异性设计能够针对主要的负载载荷需求。纤维在单轴张力方面特别有效,但在压缩下,复合材料遭受了一系列与纤维微弯曲或扭结有关的故障,与基质或界面问题有关;这些机制以各种物理长度尺度以复杂的方式融为一体。通常,这些类型的故障决定了复合材料的实际用法,并将设计限制远低于组成纤维的预期内在性能。另一方面,新的成分和过程变得可用,以使有向的复合结构组装在长度范围内控制的长度范围比以前更大。因此,原则上应重新设计复合材料,以利用这些机会替代或重定向压缩过程。天然材料(例如木材和骨骼)是完全分层的,具有精确的结构特征,可以在每个可能的放大倍率下解决。人造复合材料缺乏这种灵活性,但可以利用本质上优越的成分。可视化,计算和控制结构(包括定量精度)的不断提高的能力将允许开发新一代的复合材料。野心是通过设计这样的层次结构系统来实现纤维的全部固有潜力,从第一原理,利用机械过程的材料,处理,表征和建模方面的最新发展,该计划的重点是将复合材料在压缩中的绝对性能的挑战,以改善材料的实用性限制,以确定材料的实用性限制,并有价值地指定材料的实用性。在此程序中开发的工具和材料将在其他一系列情况下很有用。从矩阵的分子到最终组件的上层,使用新的组成部分和新的架构,将在每个长度上开发和嵌入结构,并使用新的分析框架设计。该计划将受益于核心项目术语中的高度创造性和跨学科的方法,并受到领先的国际顾问和合作者的贡献。一组广泛的工业合作伙伴将为该项目做出贡献,并帮助开发在计划期间设计的概念示威者的基础上。科学和技术结果将在国内和国际上广泛传播,有助于确保英国在这一关键领域的领导。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel bio-inspired microstructure for improved compressive performance of multidirectional CFRP laminates
一种新型仿生微结构,可提高多向 CFRP 层压板的压缩性能
- DOI:10.1016/j.compositesb.2023.110867
- 发表时间:2023
- 期刊:
- 影响因子:12.8
- 作者:Garulli T
- 通讯作者:Garulli T
Silica aerogel infused hierarchical glass fiber polymer composites
- DOI:10.1016/j.coco.2023.101531
- 发表时间:2023-02
- 期刊:
- 影响因子:8
- 作者:D. B. Anthony;S. Nguyen;H. Qian;S. Xu;Charles M.D. Shaw;E. Greenhalgh;A. Bismarck;M. Shaffer
- 通讯作者:D. B. Anthony;S. Nguyen;H. Qian;S. Xu;Charles M.D. Shaw;E. Greenhalgh;A. Bismarck;M. Shaffer
Carbon Nanotube-grafted Carbon Fiber Production: A Scaling Challenge
碳纳米管接枝碳纤维生产:规模化挑战
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Anthony D.B.
- 通讯作者:Anthony D.B.
A novel bio-inspired microstructure for progressive compressive failure in multidirectional composite laminates
一种新型仿生微结构,可用于多向复合材料层压板的渐进压缩破坏
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Garulli T
- 通讯作者:Garulli T
Evaluation of manufacturing methods for pultruded rod-based hierarchical composite structural members with minimal porosity
具有最小孔隙率的拉挤棒基分层复合结构构件的制造方法评估
- DOI:10.1177/14658011231212627
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Pickard L
- 通讯作者:Pickard L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milo Shaffer其他文献
Milo Shaffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milo Shaffer', 18)}}的其他基金
Manufacturing High Performance Wearable De Novo Polypeptide Fabrics
制造高性能可穿戴从头多肽织物
- 批准号:
EP/V052020/1 - 财政年份:2021
- 资助金额:
$ 790.67万 - 项目类别:
Research Grant
Electrochemical processing of discrete nanoparticle ions
离散纳米粒子离子的电化学处理
- 批准号:
EP/L001896/1 - 财政年份:2013
- 资助金额:
$ 790.67万 - 项目类别:
Research Grant
Large-scale solvent-free functionalisation of carbon nanotubes
碳纳米管的大规模无溶剂官能化
- 批准号:
EP/H007598/1 - 财政年份:2009
- 资助金额:
$ 790.67万 - 项目类别:
Research Grant
Directed Assembly of High Aspect Ratio Nanoparticles for Hierarchical Materials
用于分层材料的高纵横比纳米颗粒的定向组装
- 批准号:
EP/G007314/1 - 财政年份:2008
- 资助金额:
$ 790.67万 - 项目类别:
Fellowship
相似国自然基金
新一代精准、安全、适用范围更广的腺嘌呤碱基编辑器的开发及其在基因治疗中的应用研究
- 批准号:32371535
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于中日两国新一代地球静止轨道卫星的植被初级生产力遥感
- 批准号:42311540014
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
创制可转化利用木质素基酚类化合物的新一代产油红酵母
- 批准号:22308350
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新一代信息技术的复杂油气储层地震勘探理论和方法
- 批准号:42330801
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
面向新一代分布式物联网的随机接入系统理论与关键技术研究
- 批准号:62371363
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Next Generation of Automotive Crossmember by cOMlding Epoxy SMC with Fibre Steered Preforms (GACOM)
通过将环氧 SMC 与纤维转向预成型件 (GACOM) 混合来制造下一代汽车横梁
- 批准号:
10081994 - 财政年份:2023
- 资助金额:
$ 790.67万 - 项目类别:
Collaborative R&D
Carbon fibre thermoplastics as next-generation carbon fibre composites
碳纤维热塑性塑料作为下一代碳纤维复合材料
- 批准号:
DP230103008 - 财政年份:2023
- 资助金额:
$ 790.67万 - 项目类别:
Discovery Projects
Advancing Quantum Communications using Next-Generation Optical Fibre
使用下一代光纤推进量子通信
- 批准号:
2742638 - 财政年份:2022
- 资助金额:
$ 790.67万 - 项目类别:
Studentship
Routing shapes of light for the next generation of fibre optic networks
下一代光纤网络的光路由形状
- 批准号:
FT200100590 - 财政年份:2021
- 资助金额:
$ 790.67万 - 项目类别:
ARC Future Fellowships
Next generation lasers for short-reach optical fibre communication
用于短距离光纤通信的下一代激光器
- 批准号:
LP170100720 - 财政年份:2019
- 资助金额:
$ 790.67万 - 项目类别:
Linkage Projects