Coherent Many-Body Quantum States of Matter

相干多体量子物质态

基本信息

  • 批准号:
    EP/S020527/1
  • 负责人:
  • 金额:
    $ 194.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

In our everyday life we rarely think about the effects of quantum mechanics --- and yet they are constantly around us, determining the properties of every material object in our world. The laws of quantum physics define every property of matter, from the behaviour of individual atoms, to how the atoms bind together to form materials, to the characteristics of these resultant materials. Our understanding of this chain of influence is one of the greatest triumphs of modern science. It is only through this understanding that scientists have engineered modern technologies and devices such as computers, mobile phones, and fibre-optic communications. In the field of quantum condensed matter, we are concerned with materials, and the quantum mechanics of matter, at a very microscopic scale. Our aim is to uncover new principles, predict new behaviours, new types of matter, and enable new applications. A key concept that we focus on is the idea of quantum mechanical coherence in matter. The word "coherence" here implies that many microscopic objects are acting together in concert. Such behaviour, when it occurs, allows for the effects of quantum physics to be greatly enhanced. A prime example of coherent behaviour occurs in a superconductor, where due to the effects of quantum mechanics, electrons can flow forever with zero resistance and zero energy loss. In the last decades it has become clear in our community that quantum-mechanical coherence in materials is much more common than we previously expected, although its effects are often subtle and well hidden from our view. Understanding coherent effects in systems made of many particles (i.e., in material substances) is the main aim of the research supported by this grant. We use a combination of modern mathematical and computational tools to investigate the puzzles of our field. The physics we study is highly complex because in such systems, the many constituent particles interact strongly with each other. As a consequence, qualitatively different behaviour emerges. Because of the novelty of these effects, this field of study is both challenging and exciting, attracting some of the best and the brightest young scientists. We have divided our effort into three main themes: Understanding Quantum Many-Body Dynamics: the investigation of how quantum mechanics effects the time evolution of material systems on a microscopic scale. We aim to determine new principles for how coherence is created, spreads, and is destroyed, and how this affects the properties of the substance. Exploring Quantum Behaviour Far From the Ground State: for over a century it was believed that if heat energy is put into a physical system at one point, it will inevitably spread out to other regions. In the last few years, however, it has become clear that due to the effects of quantum coherence in interacting disordered systems, added energy may remain localized in one region in a stable fashion. We aim to understand better the properties of systems that present such stable and/or coherent high energy states. Identifying Topological Platforms for Quantum Coherent Phenomena: topological matter exhibits subtle long-range patterns of coherence that cannot be understood by local descriptions. Because of these global effects, such materials are believed to be particularly well suited for robust quantum computing applications. The study of these substances therefore has attracted researchers from physics, mathematics, and computer science. We will explore these materials, where they exist in nature, how they might be engineered, and what their applications are. While our research is mainly academic in nature, we hope that, analogous to discoveries in basic semiconductor physics a century ago, our discoveries may enable technological revolutions of the future.
在我们的日常生活中,我们很少考虑量子力学的影响 - 但是它们一直在我们周围,确定了我们世界上每个物质对象的特性。量子物理的定律定义了物质的每个特性,从单个原子的行为到原子如何结合形成材料,再到这些所得材料的特征。我们对这种影响链的理解是现代科学的最大胜利之一。只有通过这种理解,科学家才设计了现代技术和设备,例如计算机,手机和光纤通信。在量子冷凝物质的领域,我们关注的是材料和物质的量子力学,以非常微观的范围。我们的目的是揭示新的原则,预测新的行为,新类型的物质以及启用新应用程序。我们关注的关键概念是物质中量子机械连贯性的概念。这里的“连贯性”一词意味着许多微观物体在一致的共同行动中起作用。当这种行为发生时,允许量子物理学的影响得到极大的增强。相干行为的一个主要例子发生在超导体中,在量子力学的影响下,电子可以以零电阻和零能量损失的形式永远流动。在过去的几十年中,在我们的社区中已经很明显,材料中的量子力学连贯性比我们以前预期的要普遍得多,尽管从我们的角度看,它的效果通常是微妙的,并且隐藏了。理解许多颗粒制成的系统(即物质物质)是该赠款支持的研究的主要目的。我们使用现代数学和计算工具的组合来研究我们领域的难题。我们研究的物理学非常复杂,因为在这样的系统中,许多组成粒子彼此相互作用。结果,定性上出现了不同的行为。由于这些效果的新颖性,这个研究领域既具有挑战性又令人兴奋,吸引了一些最好和最聪明的年轻科学家。我们将努力分为三个主要主题:了解量子多体动力学:量子力学如何在微观范围内影响材料系统的时间演变。我们旨在确定如何创造,传播和破坏连贯性的新原则,以及这如何影响物质的特性。探索远离基态的量子行为:一个多世纪以来,人们相信,如果将热能放入物理系统中,它将不可避免地分散到其他地区。然而,在过去的几年中,很明显,由于量子相干性在相互作用的无序系统中的影响,添加的能量可能以稳定的方式保持在一个区域。我们旨在更好地了解呈现这种稳定和/或相干高能状态的系统的性质。识别量子相干现象的拓扑平台:拓扑问题表现出微妙的远程连贯性模式,而局部描述无法理解。由于这些全球效果,这种材料被认为特别适合强大的量子计算应用。因此,对这些物质的研究吸引了物理,数学和计算机科学的研究人员。我们将探索这些材料,它们在自然界中存在的位置,如何设计它们以及它们的应用是什么。尽管我们的研究主要是学术性的,但我们希望一个世纪前类似于基本半导体物理学的发现,我们的发现可能会实现对未来的技术革命。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Landau levels, Bardeen polynomials, and Fermi arcs in Weyl semimetals: Lattice-based approach to the chiral anomaly
  • DOI:
    10.1103/physrevb.99.140201
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jan Behrends;S. Roy;M. Kolodrubetz;J. Bardarson;A. Grushin
  • 通讯作者:
    Jan Behrends;S. Roy;M. Kolodrubetz;J. Bardarson;A. Grushin
Dynamics of fluctuations in quantum simple exclusion processes
  • DOI:
    10.21468/scipostphys.12.1.042
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    D. Bernard;F. Essler;Ludwig Hruza;M. Medenjak
  • 通讯作者:
    D. Bernard;F. Essler;Ludwig Hruza;M. Medenjak
Distinguishing localization from chaos: Challenges in finite-size systems
  • DOI:
    10.1016/j.aop.2021.168415
  • 发表时间:
    2021-02-22
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Abanin, D. A.;Bardarson, J. H.;Vasseur, R.
  • 通讯作者:
    Vasseur, R.
Entanglement Negativity and Mutual Information after a Quantum Quench: Exact Link from Space-Time Duality.
量子淬灭后的纠缠负性和互信息:时空对偶的精确联系。
  • DOI:
    10.1103/physrevlett.129.140503
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bertini B
  • 通讯作者:
    Bertini B
Topological Defects on the Lattice: Dualities and Degeneracies
晶格上的拓扑缺陷:对偶性和简并性
  • DOI:
    10.48550/arxiv.2008.08598
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aasen D
  • 通讯作者:
    Aasen D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J Chalker其他文献

J Chalker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J Chalker', 18)}}的其他基金

Quantum Matter in and out of Equilibrium
平衡态和非平衡态的量子物质
  • 批准号:
    EP/N01930X/1
  • 财政年份:
    2016
  • 资助金额:
    $ 194.73万
  • 项目类别:
    Research Grant
Oxford Quantum Condensed Matter Theory Grant
牛津量子凝聚态理论补助金
  • 批准号:
    EP/I032487/1
  • 财政年份:
    2011
  • 资助金额:
    $ 194.73万
  • 项目类别:
    Research Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于序列深度显微图像的非织造滤材三维结构重建
  • 批准号:
    61771123
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: New Regimes of Coherent Nonequilibrium Dynamics in Quantum Many-Body Systems
职业:量子多体系统中相干非平衡动力学的新机制
  • 批准号:
    2143635
  • 财政年份:
    2022
  • 资助金额:
    $ 194.73万
  • 项目类别:
    Continuing Grant
Coherent many-body dynamics between a quantum system and its environment
量子系统与其环境之间的相干多体动力学
  • 批准号:
    2458719
  • 财政年份:
    2020
  • 资助金额:
    $ 194.73万
  • 项目类别:
    Studentship
Theoretical study of nonlinear optical responses of ultracold atomic systems: towards a high-resolution coherent multidimensional spectroscopy investigation of quantum many-body effects
超冷原子系统非线性光学响应的​​理论研究:量子多体效应的高分辨率相干多维光谱研究
  • 批准号:
    19K14638
  • 财政年份:
    2019
  • 资助金额:
    $ 194.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Addressing Quantum Many-Body Dynamics by Ultrafast Coherent Control with Attosecond Precision
通过阿秒级精度的超快相干控制解决量子多体动力学问题
  • 批准号:
    16H06289
  • 财政年份:
    2016
  • 资助金额:
    $ 194.73万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
CAREER: Non-Equilibrium Coherent Many-Body Dynamics with Cold Atoms
职业:冷原子的非平衡相干多体动力学
  • 批准号:
    1148957
  • 财政年份:
    2012
  • 资助金额:
    $ 194.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了