Quantum Matter in and out of Equilibrium

平衡态和非平衡态的量子物质

基本信息

  • 批准号:
    EP/N01930X/1
  • 负责人:
  • 金额:
    $ 189.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Matter -- substance in the world around us -- is "condensed" when its many pieces act in concert. Examples of condensed matter are virtually limitless, since any material is comprised of many individual atoms. The study of condensed matter on a microscopic scale inevitably involves quantum physics -- the laws of nature that apply to small objects such as individual atoms or electrons. Using quantum theory to study condensed matter lies at the heart of our research. Quantum condensed matter theory contains some of the most important, most difficult, and most intriguing questions in modern science. The reason is that the effects of quantum mechanics are all the more complex and surprising when many constituent parts of a large system behave collectively. Unexpected phenomena can "emerge" on large scales that bear no similarity to the microscopic properties. For example, many electrons can collectively "superconduct", carrying electrical current over huge distances with absolutely no loss of energy. An even more spectacular emergent behaviour in some systems is electron "fractionalisation", where the electron effectively has split into pieces!Quantum condensed matter theory is of fundamental academic interest because of the strange and surprising things that occur. It is also essential for the development of a vast range of technologies; it is no exaggeration to say that the computer and communications industries are built upon a foundation of discoveries and understanding in the quantum condensed matter theory of the last century. While our work is mainly academic in nature, our current explorations may very well pave the way for new industries in the years to come. The Oxford quantum condensed matter theory group use modern tools and techniques to unravel the puzzles of quantum condensed matter, to push forward the boundaries of knowledge, and to lay the groundwork for technologies of the future. The research is motivated by the overarching goal of finding structure and patterns in complex quantum systems, and the particular projects are coherent directions united by both specific motivations and methods. The work is summarized by four themes, all at the forefront of modern research:(1) Characterisation and Detection of Topological Matter, a particularly promising type of matter for future quantum technologies, only discovered recently, which so far has defied thorough understanding both theoretically and experimentally. One of its specific features is fractionalization.(2) Non-equilibrium Quantum States of Matter, quantum systems which are not well described by the conventional tools of thermodynamics and statistical mechanics developed in the last century. (3) Geometric Descriptions of Topological Phases -- the best approach to understanding topological matter from Theme (1) often uses a geometrical language. (4) Disorder in Correlated Quantum Matter -- some types of matter appear only in systems with many impurities or irregularities in the arrangements of atoms.The understanding we gain from these explorations will in turn open up new scientific directions.
当它的许多作品演唱会时,物质 - 我们周围世界的实质是“凝结的”。凝结物质的示例实际上是无限的,因为任何材料都由许多单独的原子组成。在微观范围内对凝结物质的研究不可避免地涉及量子物理学 - 适用于单个原子或电子等小物体的自然定律。使用量子理论研究凝结物质是我们研究的核心。量子凝结理论包含现代科学中一些最重要,最困难,最有趣的问题。原因是当大型系统的许多组成部分集体行为时,量子力学的影响就会更加复杂和令人惊讶。意外的现象可以在与微观特性没有相似性的大规模上“出现”。例如,许多电子可以集体“超导体”,在巨大的距离上携带电流,而绝对不会损失能量。在某些系统中,更壮观的紧急行为是电子“分数化”,电子有效地分为零件!量子冷凝的物质理论具有基本的学术兴趣,因为发生了奇怪而令人惊讶的事情。这对于开发各种技术也是必不可少的。毫不夸张地说,计算机和通信行业是建立在上个世纪量子凝结物质理论中的发现和理解的基础上的。尽管我们的工作主要是学术性的,但我们目前的探索很可能为未来几年的新行业铺平道路。牛津量子浓缩物质理论小组使用现代工具和技术来揭示量子凝结物质的难题,以推动知识的界限,并为未来的技术奠定基础。这项研究是由在复杂量子系统中找到结构和模式的总体目标所激发的,而特定的项目是由特定动机和方法结合在一起的连贯方向。这项工作是由四个主题总结的,这都是现代研究的最前沿:(1)对拓扑问题的表征和检测,这是未来量子技术的特别有希望的物质类型,直到最近才发现,这在理论上和实验上都没有彻底理解。它的特定特征之一是分数化。(2)物质的非平衡量子状态,量子系统的传统热力学工具和上个世纪开发的统计力学的传统工具没有很好地描述。 (3)拓扑阶段的几何描述 - 从主题(1)理解拓扑问题的最佳方法经常使用几何语言。 (4)相关量子问题的障碍 - 某些类型的物质仅出现在原子安排中有许多杂质或违规性的系统中。我们从这些探索中获得的理解将依次打开新的科学方向。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non relativistic limit of integrable QFT with fermionic excitations
费米子激发可积 QFT 的非相对论极限
  • DOI:
    10.1088/1751-8121/aa6f69
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bastianello A
  • 通讯作者:
    Bastianello A
Gaussian free fields at the integer quantum Hall plateau transition
整数量子霍尔平台跃迁处的高斯自由场
  • DOI:
    10.1016/j.nuclphysb.2017.02.011
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Bondesan R
  • 通讯作者:
    Bondesan R
Spinon confinement in a quasi-one-dimensional anisotropic Heisenberg magnet
  • DOI:
    10.1103/physrevb.96.054423
  • 发表时间:
    2017-08-17
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bera, A. K.;Lake, B.;Quintero-Castro, D. L.
  • 通讯作者:
    Quintero-Castro, D. L.
Non-Equilibrium Steady State generated by a moving defect: the supersonic threshold
移动缺陷产生的非平衡稳态:超音速阈值
  • DOI:
    10.48550/arxiv.1705.09270
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bastianello A
  • 通讯作者:
    Bastianello A
Nonequilibrium Steady State Generated by a Moving Defect: The Supersonic Threshold.
由移动缺陷产生的非平衡稳态:超音速阈值。
  • DOI:
    10.1103/physrevlett.120.060602
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bastianello A
  • 通讯作者:
    Bastianello A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J Chalker其他文献

J Chalker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J Chalker', 18)}}的其他基金

Coherent Many-Body Quantum States of Matter
相干多体量子物质态
  • 批准号:
    EP/S020527/1
  • 财政年份:
    2019
  • 资助金额:
    $ 189.74万
  • 项目类别:
    Research Grant
Oxford Quantum Condensed Matter Theory Grant
牛津量子凝聚态理论补助金
  • 批准号:
    EP/I032487/1
  • 财政年份:
    2011
  • 资助金额:
    $ 189.74万
  • 项目类别:
    Research Grant

相似国自然基金

Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
  • 批准号:
    82371255
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
空气颗粒物通过调控白血病抑制因子参与影响IgA肾病进展的作用与机制研究
  • 批准号:
    82370711
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
星形胶质细胞介导的髓鞘吞噬参与慢性脑低灌注白质损伤的机制研究
  • 批准号:
    82371307
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:
面向军事情报的多媒体大数据分析与展示
  • 批准号:
    U1435211
  • 批准年份:
    2014
  • 资助金额:
    150.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

Stress Granule Formation in the Antiretroviral-Mediated Dysregulation of Oligodendrocyte Maturation in HIV-HAND
HIV-HAND 中抗逆转录病毒介导的少突胶质细胞成熟失调中的应激颗粒形成
  • 批准号:
    10762118
  • 财政年份:
    2023
  • 资助金额:
    $ 189.74万
  • 项目类别:
Modifying endothelial Piezo 1 function to improve brain perfusion in AD/ADRD
修改内皮 Piezo 1 功能以改善 AD/ADRD 患者的脑灌注
  • 批准号:
    10658645
  • 财政年份:
    2023
  • 资助金额:
    $ 189.74万
  • 项目类别:
Altered microglia states and microglia-endothelial cell axis in relation to white matter disease progression in VCID
VCID 中小胶质细胞状态和小胶质细胞内皮细胞轴的改变与白质疾病进展相关
  • 批准号:
    10738860
  • 财政年份:
    2023
  • 资助金额:
    $ 189.74万
  • 项目类别:
Mechanisms of Kallikrein 6 in Myelin Plasticity, Motor Learning, and Fear Memory
激肽释放酶 6 在髓鞘可塑性、运动学习和恐惧记忆中的机制
  • 批准号:
    10677390
  • 财政年份:
    2023
  • 资助金额:
    $ 189.74万
  • 项目类别:
Role of Microglial Fractalkine Signaling in Altered Dopaminergic Wiring in FASD
小胶质细胞分形蛋白信号传导在 FASD 多巴胺能线路改变中的作用
  • 批准号:
    10666254
  • 财政年份:
    2023
  • 资助金额:
    $ 189.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了