Strain-Tuning of Emergent states of Matter

物质紧急状态的应变调整

基本信息

  • 批准号:
    EP/S005005/1
  • 负责人:
  • 金额:
    $ 93.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Future technologies such as spintronics or integrated quantum sensors require materials that do not only have outstanding electronic properties but incorporate intricate complex magnetic and structural functionalities. One large class of compounds that has the potential to play a key role in such technologies are 'Quantum Materials'. The overarching commonality is that the properties of these materials are governed by quintessential quantum mechanical phenomena e.g. stabilising coherent many body phases which are driven by electron-electron interactions. The physics of these truly advanced materials is governed by a strong interplay between different competing magnetic, charge and orbital degrees of freedom with the emergent phenomena often posing a fundamental challenge to our current level of understanding. A feature central to our proposal is that the large number of competing or cooperating charge and spin orders result in an extreme tunability of the physical properties of quantum materials - they are highly sensitive to external stimuli. This sensitivity of course makes them very attractive for applications which require controlling currents, magnetism or sensing environmental parameters. Here we will exploit this tunability through uniaxial strain, a key control parameter which has received increased attention recently. Its capability for selective symmetry control by lattice straining has been very successful in strongly changing superconducting transition temperatures, stabilising completely new phases, or changing the coupling between charge and spin density waves by symmetry control. A study of the strain-stabilized electronic states in quantum materials is technologically very challenging, requiring ideally in-situ strain tuning and spectroscopic characterization of the electronic states. We recently succeeded in combining atomically resolved spectroscopic imaging of the electronic properties of materials by scanning tunnelling microscopy with in-situ tuning of uniaxial strain. This provides a step change in our capabilities to study the impact of strain on emergent orders and the electronic structure. Combination of the atomic-scale characterization with macroscopic measurements of the properties of the strain stabilized phases will provide new insights into the interplay between the microscopic physics found at the atomic scale and macroscopic properties of the material. It will also enable us to identify new ways to manipulate emergent phases of matter using uniaxial strain.
自旋电子学或集成量子传感器等未来技术需要的材料不仅具有出色的电子特性,而且还具有复杂的磁性和结构功能。有潜力在此类技术中发挥关键作用的一大类化合物是“量子材料”。首要的共同点是这些材料的特性受到典型的量子力学现象的控制,例如稳定由电子-电子相互作用驱动的相干的许多体相。这些真正先进材料的物理学受到不同竞争的磁、电荷和轨道自由度之间的强烈相互作用的控制,而新出现的现象往往对我们当前的理解水平构成根本性挑战。我们建议的一个核心特征是,大量竞争或合作的电荷和自旋顺序导致量子材料的物理性质的极端可调性——它们对外部刺激高度敏感。这种敏感性当然使它们对于需要控制电流、磁性或感测环境参数的应用非常有吸引力。在这里,我们将通过单轴应变来利用这种可调谐性,单轴应变是最近受到越来越多关注的关键控制参数。其通过晶格应变进行选择性对称控制的能力在强烈改变超导转变温度、稳定全新相或通过对称控制改变电荷和自旋密度波之间的耦合方面非常成功。对量子材料中应变稳定电子态的研究在技术上非常具有挑战性,理想情况下需要对电子态进行原位应变调谐和光谱表征。我们最近成功地将扫描隧道显微镜对材料电子特性的原子分辨光谱成像与单轴应变的原位调谐相结合。这使我们研究应变对紧急秩序和电子结构的影响的能力发生了阶跃变化。原子尺度表征与应变稳定相特性的宏观测量相结合,将为原子尺度上发现的微观物理与材料的宏观特性之间的相互作用提供新的见解。它还将使我们能够找到利用单轴应变操纵物质涌现相的新方法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elastocaloric determination of the phase diagram of Sr$_2$RuO$_4$
Sr$_2$RuO$_4$相图的弹热测定
  • DOI:
    10.5445/ir/1000149212
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Y
  • 通讯作者:
    Li Y
Tuneable electron-magnon coupling of ferromagnetic surface states in PdCoO2
  • DOI:
    10.1038/s41535-022-00428-8
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Mazzola, F.;Yim, C-M;King, P. D. C.
  • 通讯作者:
    King, P. D. C.
Magnetic-Field Tunable Intertwined Checkerboard Charge Order and Nematicity in the Surface Layer of Sr$_2$RuO$_4$
Sr$_2$RuO$_4$表面层磁场可调交织棋盘电荷顺序和向列性
  • DOI:
    10.48550/arxiv.2005.00071
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marques C
  • 通讯作者:
    Marques C
Spin-orbit driven superconducting proximity effects in Pt/Nb thin films.
  • DOI:
    10.1038/s41467-023-40757-1
  • 发表时间:
    2023-08-21
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Flokstra, Machiel;Stewart, Rhea;Yim, Chi-Ming;Trainer, Christopher;Wahl, Peter;Miller, David;Satchell, Nathan;Burnell, Gavin;Luetkens, Hubertus;Prokscha, Thomas;Suter, Andreas;Morenzoni, Elvezio;Bobkova, Irina V.;Bobkov, Alexander M.;Lee, Stephen
  • 通讯作者:
    Lee, Stephen
Constraints on the superconducting state of Sr$_2$RuO$_4$ from elastocaloric measurements
弹热测量对 Sr$_2$RuO$_4$ 超导状态的约束
  • DOI:
    10.48550/arxiv.2304.07182
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Palle G
  • 通讯作者:
    Palle G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Wahl其他文献

alpha-Lipoic acid decreases oxidative stress even in diabetic patients with poor glycemic control and albuminuria.
即使在血糖控制不佳和蛋白尿的糖尿病患者中,α-硫辛酸也能降低氧化应激。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    V. Borcea;J. Nourooz;Simon P Wolff;Martina S Klevesath;Marion A. Hofmann;Heinz Urich;Peter Wahl;Reinhard Ziegler;Hans Tritschler;Barry Halliwell;P. P. Nawroth
  • 通讯作者:
    P. P. Nawroth

Peter Wahl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Wahl', 18)}}的其他基金

Suppressing SARS-CoV-2 transmission in public spaces through surface engineering
通过表面工程抑制 SARS-CoV-2 在公共场所的传播
  • 批准号:
    MR/V028464/1
  • 财政年份:
    2020
  • 资助金额:
    $ 93.9万
  • 项目类别:
    Research Grant
Controlling Emergent Orders in Quantum Materials
控制量子材料中的紧急秩序
  • 批准号:
    EP/R031924/1
  • 财政年份:
    2018
  • 资助金额:
    $ 93.9万
  • 项目类别:
    Research Grant
Designer Oxides: Reactive-Oxide Molecular Beam Epitaxy System
设计氧化物:活性氧化物分子束外延系统
  • 批准号:
    EP/M023958/1
  • 财政年份:
    2015
  • 资助金额:
    $ 93.9万
  • 项目类别:
    Research Grant
Topological Protection and Non-Equilibrium States in Strongly Correlated Electron Systems
强相关电子系统中的拓扑保护和非平衡态
  • 批准号:
    EP/I031014/1
  • 财政年份:
    2011
  • 资助金额:
    $ 93.9万
  • 项目类别:
    Research Grant

相似国自然基金

钙钛矿超晶格微腔中的高品质波长可调谐单模激光性能研究
  • 批准号:
    62305078
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新疆准噶尔盆地陆相二叠系-三叠系界限天文调谐的地磁极性年表研究
  • 批准号:
    42374085
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
利用慢光效应的硅基集成窄线宽可调谐激光器
  • 批准号:
    62304139
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
  • 批准号:
    12374318
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
自供能半主动调谐质量阻尼器的振动能量收集与减震机理研究
  • 批准号:
    52308526
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
  • 批准号:
    2411680
  • 财政年份:
    2024
  • 资助金额:
    $ 93.9万
  • 项目类别:
    Standard Grant
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 93.9万
  • 项目类别:
    Studentship
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 93.9万
  • 项目类别:
    Standard Grant
Tuning catalyst reaction environments towards photoreforming of wastewater
调整催化剂反应环境以实现废水的光重整
  • 批准号:
    DP240100687
  • 财政年份:
    2024
  • 资助金额:
    $ 93.9万
  • 项目类别:
    Discovery Projects
Tuning near-infrared photosynthesis
调节近红外光合作用
  • 批准号:
    BB/X015858/1
  • 财政年份:
    2024
  • 资助金额:
    $ 93.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了