SOFTWARE DEFINED MATERIALS FOR DYNAMIC CONTROL OF ELECTROMAGNETIC WAVES (ANIMATE)

用于电磁波动态控制的软件定义材料(动画)

基本信息

  • 批准号:
    EP/R035393/1
  • 负责人:
  • 金额:
    $ 169.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Inspired by recent scientific breakthroughs in the area of transformation optics (TO) and metamaterials, QMUL in collaboration with its partners and UK industries have demonstrated several novel antenna solutions which potentially offer new composite flat lens antenna, surface wave and metasurface devices that could be embedded into the skin of vehicles without compromising aerodynamic performance, representing a major leap forward for future technologies related to the Internet of Things (IoT), CubeSat and Space Communications. The potential of the underlying design approaches have much wider applicability in arguably all technical challenges as addressed above. For example, we extended the TO technique to design novel beam steerable antennas . Instead of moving or tilting the feed/reflctor, we employ an alternative way to manipulate the reflected emission by varying the permittivity of dielectrics derived from TO. This method has the merits of maintaining a flat profile, being capable of beam-steering and frequeny agility. Combining with appropriate feed designs, the system can be effectively be used as either a single radiator or an array fulfilling massive MIMO functions. In a broad sense, dielectric substrates with spatially varying permittivity and/or permeability can be regarded as a "magic black box", whose properties are programmable according to required functional requirements. In the proposed ANIMATE project, we refer to this magic black box as "software defined materials", since they demonstrate far-reaching capabilities well beyond conventional antennas and arguably in all devices and systems that exploit electromagnetic spectra. To enable this step change, a suite of novel advanced materials must be studied and developed, especially, active materials and structures with low loss, high tunability but low DC power dissipation are desirable. In addition, a robust biasing network is needed so that material building blocks can be individually controlled. In spite of the longstanding quest and intensive research over the years, this subject area still remains insufficiently explored. With ongoing advances in modelling and manufacturing tools, it is now possible to revisit some fundamental limits imposed on conventional materials and antenna designs. The vision of ANIMATE is therefore to unlock contributions and expertise from multiple disciplines, to develop a core programme of research on software defined materials, which will enable dynamic control of electromagnetic waves for applications in sensing, communications and computation.The ultimate objective of ANIMATE is to remove the traditional boundary between the designs of antennas and RF/microwave electronics as well as materials and devices, so that a generic material platform can be developed that is programmable and flexible for multifunctional applications integrating communication, sensing and computation. Specifically, in this project, we will:1. Establish a holistic approach of software-defined materials for communication, sensing and computation, by building novel integrated and adaptive antenna technologies.2. Integrate wireless sensor networks into the design of computer interface and control units for tunable materials to demonstrate and validate the wholly new concept of "networked materials" at subwavelength scales.3. Exploit challenging applications of proposed antenna and material technologies with our core industrial partners at all stages of development: prototyping, manufacturing, toolbox validation, platform integration and testing. 4. Research novel active and tunable materials and investigate fundamental limits of relevant materials to industrial challenges.5. Develop simulation tools that span from materials, device and process modeling with intricate complexities that open up the design domain significantly and enable the production of optimal structures with improved performance.
Qmul受到转型光学(TO)和超材料领域最近的科学突破的启发,与其合作伙伴和英国行业合作,展示了一些新型的天线解决方案,这些解决方案可能提供新的复合扁平透镜天线,表面波和跨境设备,这些设备可以嵌入无效的Interlets Internet for Interlets Interlets Interlets Internet the Internity Internal Internal Internal Internal Internal Internald of Aergrormans vess,而构成了空气效果,并将其构成主要的空气效果,而不是构成空气效果,而不是构成了空气效果,并且是众多的空气效果。 (IoT),Cubesat和Space Communications。基础设计方法的潜力在上述所有技术挑战中具有更大的适用性。例如,我们将技术扩展到设计新颖的光束可通向天线。我们没有移动或倾斜饲料/反映器,而是采用另一种方法来操纵反射的发射,而改变了源自to的电介质的介电特征。该方法具有维持平坦轮廓的优点,能够进行光束传动和频繁的敏捷性。结合适当的进料设计,该系统可以有效地用作单个散热器或阵列实现的大量MIMO功能。从广义上讲,具有空间变化的介电常数和/或渗透性的介电底物可以被视为“魔术黑匣子”,根据所需的功能要求,其属性是可以编程的。在拟议的动画项目中,我们将此魔术黑匣子称为“软件定义材料”,因为它们在传统天线中表现出深远的功能,并且可以说在利用电磁光谱的所有设备和系统中。为了实现这一步骤的变化,必须研究和开发一系列新型的高级材料,尤其是具有低损失,高可调性但DC功率较低的活性材料和结构。此外,还需要一个强大的偏置网络,以便可以单独控制材料构建块。尽管多年来进行了长期的追求和深入的研究,但该主题领域仍然没有得到充分的探索。随着建模和制造工具的持续进展,现在可以重新审视对传统材料和天线设计施加的一些基本限制。因此,动画的愿景是为了从多个学科中解除贡献和专业知识,以开发软件定义材料的核心研究计划,该计划将使电磁波动态控制感应,通信和计算的应用。灵活的用于集成通信,传感和计算的多功能应用程序。具体来说,在这个项目中,我们将:1。通过构建新颖的集成和自适应天线技术,建立软件定义的材料进行通信,传感和计算的整体方法。2。将无线传感器网络集成到可调材料的计算机界面和控制单元的设计中,以在亚波长度尺度上演示和验证“网络材料”的全新概念。3。在开发的各个阶段,提出的天线和材料技术的具有挑战性的应用:原型制造,制造,工具箱验证,平台集成和测试。 4。研究新颖的活跃和可调材料,并研究相关材料对工业挑战的基本限制。5。开发从材料,设备和过程建模的仿真工具,具有复杂的复杂性,可以显着开放设计领域,并能够生产具有提高性能的最佳结构。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Study on Sparse MIMO Array for Compressive Sensing Imaging
压缩感知成像稀疏MIMO阵列研究
  • DOI:
    10.1109/cama.2018.8530675
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng Q
  • 通讯作者:
    Cheng Q
Antennas and Propagation Research From Large-Scale Unstructured Data With Machine Learning: A review and predictions
  • DOI:
    10.1109/map.2023.3290385
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Young-ok Cha;A. Ihalage;Yang Hao
  • 通讯作者:
    Young-ok Cha;A. Ihalage;Yang Hao
Optimal Observer Synthesis for Microgrids With Adaptive Send-on-Delta Sampling Over IoT Communication Networks
Noise figure of electromagnetic systems with parity and time-reversal symmetry
具有奇偶性和时间反演对称性的电磁系统的噪声系数
  • DOI:
    10.1364/oe.27.031363
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Farooq H
  • 通讯作者:
    Farooq H
A Generic Spiral MIMO Array Design Method for Short-Range UWB Imaging
  • DOI:
    10.1109/lawp.2020.2982147
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Qiao Cheng;Yujie Liu;Haoyang Zhang;Y. Hao
  • 通讯作者:
    Qiao Cheng;Yujie Liu;Haoyang Zhang;Y. Hao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Y Hao其他文献

Y Hao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Y Hao', 18)}}的其他基金

Digital Transformation of Electromagnetic Material Design and Manufacturing for Future Wireless Connectivity (DREAM)
面向未来无线连接的电磁材料设计和制造的数字化转型 (DREAM)
  • 批准号:
    EP/X02542X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant
Transmission Channels Measurements and Communication System Design for Future mmWave Communications (mmWave TRACCS)
未来毫米波通信的传输通道测量和通信系统设计 (mmWave TRACCS)
  • 批准号:
    EP/W026732/1
  • 财政年份:
    2022
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant
THz Antenna Fabrication and Measurement Facilities (TERRA)
太赫兹天线制造和测量设施 (TERRA)
  • 批准号:
    EP/S010009/1
  • 财政年份:
    2018
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant
TERAhertz high power LINKS using photonic devices, tube amplifiers and Smart antennas (TERALINKS)
使用光子器件、电子管放大器和智能天线的太赫兹高功率链路 (TERALINKS)
  • 批准号:
    EP/P016421/1
  • 财政年份:
    2017
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant
Adaptive Tools for Electromagnetics and Materials Modelling to Bridge the Gap between Design and Manufacturing (AOTOMAT)
用于弥合设计与制造之间差距的电磁学和材料建模自适应工具 (AOTOMAT)
  • 批准号:
    EP/P005578/1
  • 财政年份:
    2016
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant
The Quest for Ultimate Electromagnetics using Spatial Transformations (QUEST)
利用空间变换探索终极电磁学 (QUEST)
  • 批准号:
    EP/I034548/1
  • 财政年份:
    2011
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant
PATRICIAN: New Paradigms for Body Centric Wireless Communications at MM Wavelengths
PATRICAN:MM 波长以身体为中心的无线通信新范式
  • 批准号:
    EP/I009019/1
  • 财政年份:
    2011
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant
iRFSim for BSNs -Imaging based subject-specific RF simulation environment for wearable and implantable wireless Body Sensor Networks (BSNs)
iRFSim for BSN - 用于可穿戴和植入式无线身体传感器网络 (BSN) 的基于成像的特定主题射频仿真环境
  • 批准号:
    EP/E057624/1
  • 财政年份:
    2007
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant
Wearable Antennas for Body-Centric Wireless Networks
用于以身体为中心的无线网络的可穿戴天线
  • 批准号:
    EP/E030270/1
  • 财政年份:
    2007
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant
Follow On: Electromagnetic BandGap Enhanced Active Conical Horn Antenna Arrays
后续:电磁带隙增强型有源锥形喇叭天线阵列
  • 批准号:
    EP/E502865/1
  • 财政年份:
    2006
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Research Grant

相似国自然基金

ESG评估分歧研究:定义、前因、后果、及影响机制
  • 批准号:
    72372104
  • 批准年份:
    2023
  • 资助金额:
    40.00 万元
  • 项目类别:
    面上项目
基于前瞻性队列研究探索代谢组学定义的肥胖表型联合眼底影像数据预测糖尿病视网膜病变发生发展的研究
  • 批准号:
    82301236
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
定义并解析一类新的白血病类型-RARG重排AML
  • 批准号:
    82370169
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
分数阶模糊非线性系统预定义时间事件触发学习控制
  • 批准号:
    12361092
  • 批准年份:
    2023
  • 资助金额:
    27.00 万元
  • 项目类别:
    地区科学基金项目
氧化镓宽禁带半导体辐射诱导缺陷定义及损伤评估
  • 批准号:
    12305300
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Advanced Materials from Automated Synthesis of Sequence-Defined Polymers
序列定义聚合物自动合成的先进材料
  • 批准号:
    DP230101739
  • 财政年份:
    2023
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Discovery Projects
Defining the role of DOT1L in chromocenter stabilization pre- and post-fertilization
定义 DOT1L 在受精前后染色中心稳定中的作用
  • 批准号:
    10739438
  • 财政年份:
    2023
  • 资助金额:
    $ 169.66万
  • 项目类别:
Engineered Hydrogel Elucidates the Contribution of ECM Stiffness to Barrett's Esophagus Pathogenesis
工程水凝胶阐明了 ECM 硬度对巴雷特食管发病机制的影响
  • 批准号:
    10664561
  • 财政年份:
    2023
  • 资助金额:
    $ 169.66万
  • 项目类别:
Mitosis in Confining Microenvironments
限制性微环境中的有丝分裂
  • 批准号:
    10719384
  • 财政年份:
    2023
  • 资助金额:
    $ 169.66万
  • 项目类别:
Sequence-Defined Pi-Conjugated Materials for Organic Electronics
用于有机电子器件的序列定义的 Pi 共轭材料
  • 批准号:
    2898630
  • 财政年份:
    2023
  • 资助金额:
    $ 169.66万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了