Direct Numerical Simulations for Additive Manufacturing in Porous Media

多孔介质增材制造的直接数值模拟

基本信息

  • 批准号:
    EP/P031307/1
  • 负责人:
  • 金额:
    $ 60.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the key global technological and scientific challenges of the 21st century is the sustainable access to energy, water and food while reducing greenhouse gas emissions. Central to this challenge is our understanding of porous media flow processes, specifically our understanding of how fluids such as oil, greenhouse gases or water, flow through the pores of subsurface reservoir rocks, and how these fluids interact physically and chemically with the rock. To enhance this understanding, high-quality experimental data and accurate numerical simulation methods for porous media flow problems are needed.X-Ray Computed Tomography (X-Ray CT) combined with novel numerical simulation methods has revolutionised our ability to image and quantify the 3D physio-chemical interactions between fluids and rocks at the pore-scale. Yet, the heterogeneity and complexity of natural porous media render it difficult, if not impossible, to conduct repeatable X-Ray CT imaging experiments of flow in natural porous media in a fully controlled environment where hypotheses can be tested thoroughly and new numerical simulation approaches can be applied in a consistent way to aid the interpretation and quantification (or even prediction) of experimental results. A transformative technology that could overcome this problem is additive manufacturing, also known as 3D printing. The applications of 3D printing are diverse and evolve almost daily, ranging from companies like Boeing that accelerate their production to companies like Audi that already print components of engine intake system to medical research that experiments with printing human tissue or develops affordable tests to detect the Zika virus. The aim of this proposal is to apply 3D printing technologies to create 2D and 3D microfluidic chips representing natural porous media that can be deployed in repeatable and well-controlled porous media flow experiments supported by state-of-the-art numerical simulations. There are no reported attempts to link experiments using 3D printed microfluidic chips representing natural porous media with direct numerical simulations, let alone using data obtained from flow experiments on 3D printed samples as input for developing an international benchmarking standard for pore-scale numerical simulations and 3D printing of microfluidic chips and porous media (in both, 2D and 3D).Consultants McKinsey have estimated that the global economic potential of 3D printing will be reach $230bn to $550bn annually in 10 years, viewing it as a key technology providing global economic growth. With major international companies like Thermo-Fisher and ZEISS already offering integrated technical solutions for X-Ray CT imaging and simulation for porous media applications related to energy extraction and greenhouse gas storage, it is likely that significant new business opportunities will emerge if X-Ray CT imaging and simulation technologies are combined with 3D printing. Clearly, the UK would benefit scientifically and economically from being an early adopter of 3D printing technologies for porous media experimentation and simulation.
21 世纪全球主要技术和科学挑战之一是可持续获取能源、水和食物,同时减少温室气体排放。这一挑战的核心是我们对多孔介质流动过程的理解,特别是我们对石油、温室气体或水等流体如何流过地下储层岩石的孔隙,以及这些流体如何与岩石发生物理和化学相互作用的理解。为了增强这种理解,需要针对多孔介质流动问题提供高质量的实验数据和精确的数值模拟方法。X 射线计算机断层扫描 (X 射线 CT) 与新颖的数值模拟方法相结合,彻底改变了我们对 3D 介质进行成像和量化的能力。流体和岩石之间在孔隙尺度上的物理化学相互作用。然而,天然多孔介质的异质性和复杂性使得在完全受控的环境中对天然多孔介质中的流动进行可重复的 X 射线 CT 成像实验变得困难(如果不是不可能的话),在这种环境中可以彻底检验假设,并且可以使用新的数值模拟方法。以一致的方式应用以帮助实验结果的解释和量化(甚至预测)。增材制造(也称为 3D 打印)是一种可以解决这一问题的变革性技术。 3D 打印的应用多种多样,并且几乎每天都在发展,从波音等加速生产的公司,到奥迪等已经打印发动机进气系统组件的公司,再到尝试打印人体组织或开发经济实惠的测试来检测寨卡病毒的医学研究病毒。该提案的目的是应用 3D 打印技术来创建代表天然多孔介质的 2D 和 3D 微流控芯片,这些芯片可以部署在由最先进的数值模拟支持的可重复和良好控制的多孔介质流实验中。目前还没有报道尝试将使用代表天然多孔介质的 3D 打印微流控芯片的实验与直接数值模拟联系起来,更不用说使用从 3D 打印样品的流动实验获得的数据作为制定孔隙尺度数值模拟和 3D 的国际基准标准的输入了。微流控芯片和多孔介质(2D 和 3D)的打印。麦肯锡咨询公司估计 3D 打印的全球经济潜力将达到 2300 亿美元10 年内每年价值 5500 亿美元,将其视为推动全球经济增长的关键技术。 Thermo-Fisher 和 ZEISS 等大型国际公司已经为与能源提取和温室气体储存相关的多孔介质应用提供 X 射线 CT 成像和模拟集成技术解决方案,如果 X-Ray CT 成像和模拟技术与 3D 打印相结合。显然,作为多孔介质实验和模拟的 3D 打印技术的早期采用者,英国将在科学和经济上受益。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Benchmarking the viability of 3D printed micromodels for single phase flow using Particle Image Velocimetry and Direct Numerical Simulations
使用粒子图像测速和直接数值模拟对单相流 3D 打印微模型的可行性进行基准测试
  • DOI:
    http://dx.10.48550/arxiv.2103.03597
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimou A
  • 通讯作者:
    Dimou A
GeoChemFoam: Direct modelling of multiphase reactive transport in real pore geometries with equilibrium reactions
GeoChemFoam:通过平衡反应直接模拟真实孔隙几何形状中的多相反应输运
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maes J
  • 通讯作者:
    Maes J
A unified single-field Volume-of-Fluid-based formulation for multi-component interfacial transfer with local volume changes
基于统一单场流体体积的配方,用于具有局部体积变化的多组分界面转移
  • DOI:
    10.1016/j.jcp.2019.109024
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Maes;C. Soulaine
  • 通讯作者:
    C. Soulaine
GeoChemFoam: Direct Modelling of Multiphase Reactive Transport in Real Pore Geometries with Equilibrium Reactions
GeoChemFoam:通过平衡反应直接模拟真实孔隙几何形状中的多相反应输运
  • DOI:
    10.1007/s11242-021-01661-8
  • 发表时间:
    2021-03-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    J. Maes;H. Menke
  • 通讯作者:
    H. Menke
Improved Volume-Of-Solid Formulations for Micro-Continuum Simulation of Mineral Dissolution at the Pore-Scale
用于孔隙尺度矿物溶解微连续模拟的改进固体体积公式
  • DOI:
    10.3389/feart.2022.917931
  • 发表时间:
    2022-04-14
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. Maes;C. Soulaine;H. Menke
  • 通讯作者:
    H. Menke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sebastian Geiger其他文献

Assessing Architecture Conformance to Coupling-Related Patterns and Practices in Microservices
评估架构与微服务中耦合相关模式和实践的一致性
Process traceability in distributed manufacturing using blockchains
使用区块链的分布式制造中的流程可追溯性
Semianalytical solutions for cocurrent and countercurrent imbibition and dispersion of solutes in immiscible two‐phase flow
不混溶两相流中溶质的并流和逆流吸入和分散的半解析解决方案
  • DOI:
    10.1029/2010wr009686
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    K. S. Schmid;Sebastian Geiger;K. Sorbie
  • 通讯作者:
    K. Sorbie
Wettability, hysteresis and fracture–matrix interaction during CO2 EOR and storage in fractured carbonate reservoirs
裂缝性碳酸盐岩油藏 CO2 EOR 和封存过程中的润湿性、滞后性和裂缝-基质相互作用
Detector-based component model abstraction for microservice-based systems
针对基于微服务的系统的基于检测器的组件模型抽象
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Evangelos Ntentos;Uwe Zdun;Konstantinos Plakidas;Patric Genfer;Sebastian Geiger;Sebastian Meixner;W. Hasselbring
  • 通讯作者:
    W. Hasselbring

Sebastian Geiger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

可压缩湍流中惯性粒子的运动特性和机理的直接数值模拟研究
  • 批准号:
    12302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分离湍流中球形颗粒运动的全解析直接数值模拟研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生物质鼓泡流态化的颗粒解析-准直接数值模拟及流动特性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
均匀各向同性湍流中球形有限尺寸颗粒沉降的全解析直接数值模拟研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Direct numerical simulations of droplet break-up in turbulence in inertial and viscous regimes
惯性和粘性状态下湍流中液滴破裂的直接数值模拟
  • 批准号:
    2242512
  • 财政年份:
    2023
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Droplet breakup in homogenous turbulence: model validation through experiments and direct numerical simulations
合作研究:均匀湍流中的液滴破碎:通过实验和直接数值模拟进行模型验证
  • 批准号:
    2201707
  • 财政年份:
    2022
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Standard Grant
Study of Dual-Jet Interference and Scalar Mixing using Direct Numerical and Large-Eddy Simulations
使用直接数值和大涡模拟研究双射流干涉和标量混合
  • 批准号:
    RGPIN-2019-06735
  • 财政年份:
    2022
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Discovery Grants Program - Individual
Study of Dual-Jet Interference and Scalar Mixing using Direct Numerical and Large-Eddy Simulations
使用直接数值和大涡模拟研究双射流干涉和标量混合
  • 批准号:
    RGPIN-2019-06735
  • 财政年份:
    2022
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Discovery Grants Program - Individual
Study of Dual-Jet Interference and Scalar Mixing using Direct Numerical and Large-Eddy Simulations
使用直接数值和大涡模拟研究双射流干涉和标量混合
  • 批准号:
    RGPIN-2019-06735
  • 财政年份:
    2021
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了