USMART - smart dust for large scale underwater wireless sensing
USMART - 用于大规模水下无线传感的智能灰尘
基本信息
- 批准号:EP/P017975/1
- 负责人:
- 金额:$ 163.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wireless sensor networks using radio technology are used to gather data in many applications for infrastructure monitoring, environment monitoring and security. However this technology cannot be directly applied under water since radio waves are absorbed by water. Technologies exist for underwater communication using acoustic waves (sound) to carry data but this is a complex and demanding task requiring sophisticated processing. Hence these devices are expensive (£5-20k), bulky and power hungry which has generally limited their use to relatively small numbers and short duration. This has prevented the large scale deployment of sensor networks underwater despite huge demand for monitoring of subsea assets and the marine environment. The aim of this project is to create a smart underwater sensing framework based on ultra-low-cost underwater communication and sensing devices ('smart dust'). Pilot studies at Newcastle University have demonstrated the feasibility of producing underwater acoustic communication devices known as "nanomodems" which use novel approaches to signal processing to vastly reduce hardware complexity, size and cost. These have manufacturing cost as low as £50, very low receiver power consumption, to enable long life from small batteries, and tiny dimensions. However they can achieve data transfer and positioning capabilities found in much more expensive devices, over distances up to 1km through water. The communication technology will be extended, to further increase data transfer speed and power efficiency, and low cost sensor modules will be developed, along with flexible interfaces for commercially available sensors, to create mass deployable wireless underwater sensor devices. Protocols will be developed to allow large numbers of units to share the same communication channel efficiently while intelligent sensor processing techniques will ensure that the sensor network reliably extracts the maximum information available from the limited resources available. Hence the system will allow users to fully exploit the power of mass deployment, the whole being far greater than the sum of the parts. This will transform underwater sensor networks to allow long term monitoring with high spatial resolution, frequent updates and near real-time data delivery in a way that has been previously been cost prohibitive and impractical.With highly flexible sensor payload, the technology created may be applied to a wide range of monitoring tasks. However, the project will focus on three main demonstrator scenarios in close collaboration with industry & end users: - subsea asset monitoring e.g. condition of subsea cables, risers, seabed installations - marine environment / biodiversity monitoring - chemical or biological parameters - sensor nets for underwater security - detecting sound emitted or magnetic disturbances from underwater threatsThe novel contributions of this project will be: - Disruptive, low-cost technology enabling mass deployment with battery life of several years. - Large scale underwater monitoring (>100 devices) with high spatial resolution. - Rapid deployment and online data delivery (as opposed to data logging and collecting later). - Intelligent, adaptive sensing to maximise resource utilisation and fully exploit large scale.To maximise the impact of the project, an open test-bed will be created near the Northumberland coast. Potential end-users from across the subsea sector will be invited to take part in a series of workshops to identify new opportunities in distributed underwater sensing, which will be prototyped and evaluated via trials using the test-bed. The ultimate measurable objective of the project will be to demonstrate a step change in the efficiency of subsea data gathering. This will be defined in terms of the data delivered (volume, quality, coverage) versus overall cost of operations (hardware cost, boat time, staff time, infrastructure cost).
使用无线电技术的无线传感器网络用于在基础设施监测、环境监测和安全的许多应用中收集数据,但是该技术不能直接应用于水下,因为无线电波被水吸收。 )来传输数据,但这是一项复杂而艰巨的任务,需要复杂的处理,因此这些设备价格昂贵(5-2万英镑),体积庞大且耗电,这通常限制了它们的使用数量相对较少且持续时间较短。尽管对监测的巨大需求,大规模部署水下传感器网络该项目的目的是创建一个基于超低成本水下通信和传感设备(“智能灰尘”)的智能水下传感框架。被称为“纳米调制解调器”的水下声学通信设备采用新颖的信号处理方法,大大降低了硬件复杂性、尺寸和成本,其制造成本低至 50 英镑,接收器功耗极低,可通过小型电池实现长寿命。然而它们可以实现数据传输。更昂贵的设备中的定位功能,通过水的距离可达 1 公里。通信技术将得到扩展,以进一步提高数据传输速度和功率效率,并且将开发低成本传感器模块以及用于商业的灵活接口。传感器可用,以创建大规模可部署的水下传感器设备,将开发协议以允许大量单元有效地共享相同的通信通道,而智能传感器处理技术将确保传感器网络从有限的可用资源中可靠地提取可用的最大信息。因此系统将允许。用户可以充分利用大规模部署的力量,整体远远大于各个部分的总和,这将改变水下传感器网络,以某种方式实现高空间分辨率、频繁更新和近实时数据传输的长期监控。以前的成本过高且不切实际。凭借高度灵活的传感器有效负载,所创建的技术可应用于广泛的监控任务,但是,该项目将与行业和最终用户密切合作,重点关注三个主要演示场景: - 海底资产监控,例如海底电缆、立管、海底装置 - 海洋环境/生物多样性监测 - 化学或生物参数 - 用于水下安全的传感器网络 - 检测水下威胁发出的声音或磁干扰 该项目的新颖贡献将是: - 颠覆性、低成本技术大规模部署,电池寿命长达数年 - 具有高空间分辨率的大规模水下监测(> 100 个设备) - 快速部署和在线数据传输(而不是稍后的数据记录和收集) - 智能、自适应传感以最大化。资源利用和充分开发大规模。为了最大限度地发挥该项目的影响,将在诺森伯兰海岸附近创建一个开放的试验台,来自海底部门的潜在最终用户将被邀请参加一系列研讨会。确定分布式水下传感的新机会,该项目将通过试验台进行原型设计和评估。该项目的最终可衡量目标将是展示海底数据收集效率的阶跃变化。数据的交付(数量、质量、覆盖范围)与总体运营成本(硬件成本、船舶时间、员工时间、基础设施成本)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-User Broadcast Acoustic Positioning System
多用户广播声学定位系统
- DOI:http://dx.10.1109/oceanse.2019.8867551
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Chawla A
- 通讯作者:Chawla A
CFDAMA-SRR: A MAC Protocol for Underwater Acoustic Sensor Networks
CFDAMA-SRR:水声传感器网络的 MAC 协议
- DOI:10.1109/access.2019.2915929
- 发表时间:2019-05-09
- 期刊:
- 影响因子:3.9
- 作者:W. Gorma;P. Mitchell;N. Morozs;Y. Zakharov
- 通讯作者:Y. Zakharov
Phorcys Waveform Architecture
Phocys 波形架构
- DOI:http://dx.10.1109/ucomms56954.2022.9905673
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Davies J
- 通讯作者:Davies J
Packet Flow Based Reinforcement Learning MAC Protocol for Underwater Acoustic Sensor Networks
用于水声传感器网络的基于数据包流的强化学习 MAC 协议
- DOI:http://dx.10.3390/s21072284
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Alhassan I
- 通讯作者:Alhassan I
An Adaptive TDMA-based MAC Protocol for Underwater Acoustic Sensor Networks
水声传感器网络中基于 TDMA 的自适应 MAC 协议
- DOI:http://dx.10.1145/3366486.3366549
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Gorma W
- 通讯作者:Gorma W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Neasham其他文献
Increasing the Underwater Sensor Networks potential in Montenegro - an overview of the Horizon Europe MONUSEN project
- DOI:
10.1109/oceanslimerick52467.2023.10244299 - 发表时间:
2023-06-05 - 期刊:
- 影响因子:0
- 作者:
S. Tomovic;Nikola Mišković;Jeffrey Neasham;Massimo Caccia;Ž. Zečević;Fausto Ferreira;Luka Martinović - 通讯作者:
Luka Martinović
Low-Power, Low-Cost LoRaWAN Gateway Buoy for use with Wireless Underwater Sensor Networks
用于无线水下传感器网络的低功耗、低成本 LoRaWAN 网关浮标
- DOI:
10.1109/oceanslimerick52467.2023.10244344 - 发表时间:
2023-06-05 - 期刊:
- 影响因子:0
- 作者:
G. Lowes;Jeffrey Neasham;Benjamin Sherlock;Richie Burnett - 通讯作者:
Richie Burnett
MEMS Gyroscope and the Ego-Motion Estimation Information Fusion for the Low-Cost Freehand Ultrasound Scanner
MEMS 陀螺仪和低成本徒手超声扫描仪的自我运动估计信息融合
- DOI:
10.1109/bibm58861.2023.10385860 - 发表时间:
2023-12-05 - 期刊:
- 影响因子:0
- 作者:
Ayusha Abbas;Jeffrey Neasham;Syed Mohsen Naqvi - 通讯作者:
Syed Mohsen Naqvi
Underwater acoustic communication based on noise similar chaotic modulated signals
基于噪声相似混沌调制信号的水声通信
- DOI:
10.1109/telfor59449.2023.10372759 - 发表时间:
2023-11-21 - 期刊:
- 影响因子:0
- 作者:
Luka Lazovic;Jeffrey Neasham;Benjamin Sherlock;Ana Jovanovic;V. Rubezic - 通讯作者:
V. Rubezic
Jeffrey Neasham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Neasham', 18)}}的其他基金
Cooperative Underwater Surveillance Networks (COUSIN)
合作水下监视网络(COUSIN)
- 批准号:
EP/V009583/1 - 财政年份:2021
- 资助金额:
$ 163.66万 - 项目类别:
Research Grant
相似国自然基金
基于“活性-代谢组-基因组-SMART”整合策略发掘老鼠簕内生放线菌新型先导化合物
- 批准号:82360696
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于“溶出-吸收-代谢”介导及“成分—菌群—内源性代谢物”关联网络研究聪明汤治疗阿尔兹海默症的药效物质及配伍机制
- 批准号:82274062
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于ANDSystem与多组学的水稻和小麦胁迫响应分子调控网络及智能作物平台(Smart Crop)的构建
- 批准号:
- 批准年份:2022
- 资助金额:105 万元
- 项目类别:
精神障碍出院患者自杀风险简短联系干预(BCIs)的实施科学研究:基于序列多次分组的随机对照试验(SMART)
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
基于SMART设计建立中医药随机对照试验“随证施治”决策模型的研究
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Subtractive-waveguide based Display for Augmented Reality Smart Glasses using Spatial-temporal Multiplexed Single-CMOS Panels
SBIR 第一阶段:使用时空复用单 CMOS 面板的基于减法波导的增强现实智能眼镜显示器
- 批准号:
2335927 - 财政年份:2024
- 资助金额:
$ 163.66万 - 项目类别:
Standard Grant
CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
- 批准号:
2337069 - 财政年份:2024
- 资助金额:
$ 163.66万 - 项目类别:
Continuing Grant
CAREER: AI-enabled Integrated Nutrient, Streamflow, and Parcel sImulation for Resilient agroEcosystems (INSPIRE): a framework for climate-smart crop production and cleaner water
职业:基于人工智能的弹性农业生态系统综合养分、水流和地块模拟 (INSPIRE):气候智能型作物生产和清洁水的框架
- 批准号:
2338563 - 财政年份:2024
- 资助金额:
$ 163.66万 - 项目类别:
Continuing Grant
SCC-PG WECAN Smart Toolkit: Wellbeing Enhancement through Crowd-sourced Assessment of Neighborhood-infrastructure
SCC-PG WECAN 智能工具包:通过社区基础设施众包评估增强福祉
- 批准号:
2332339 - 财政年份:2024
- 资助金额:
$ 163.66万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 163.66万 - 项目类别:
Standard Grant