CAREER: AI-enabled Integrated Nutrient, Streamflow, and Parcel sImulation for Resilient agroEcosystems (INSPIRE): a framework for climate-smart crop production and cleaner water

职业:基于人工智能的弹性农业生态系统综合养分、水流和地块模拟 (INSPIRE):气候智能型作物生产和清洁水的框架

基本信息

  • 批准号:
    2338563
  • 负责人:
  • 金额:
    $ 50.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2028-12-31
  • 项目状态:
    未结题

项目摘要

Climate-smart agricultural practices hold the promise of reducing carbon (C) emissions from farming, yet their implementation often presents complex trade-offs, particularly affecting nitrogen (N) and phosphorus (P) management. Integrated management of C, N, and P to ensure climate-smart crop production while preserving clean waters is hindered by several knowledge and technology gaps. To approach a solution for this grand challenge, this project aims to significantly advance the holistic understanding and modeling of the interconnected C, N, P, and water cycles in the Upper Mississippi River Basin. This goal will be pursued by developing an AI-based framework of integrated nutrient, streamflow, and parcel simulation for resilient agroecosystems (INSPIRE) that can easily ingest multi-source observations and provide an accurate and speedy quantification from the field to basin scale. The outcomes from this project are expected to provide valuable insights for policymakers and farming communities, particularly in optimizing management practices for improved carbon sequestration, soil health, and water quality in the America's heartland. Additionally, this project intertwines its research objectives with an educational agenda, which is featured by developing a computational tool to foster broad participations in large-scale computing among undergraduates. The project will also introduce a cyber-physical watershed mesocosm as an innovative trial of using the digital twin technology to enhance STEM education related to agricultural and environmental sustainability.This project will develop under the overarching hypothesis that AI-assisted integrated simulation of C, N, P, and water fluxes, compared with existing process-based modeling approach, is better able to capture high resolution environmental variability and identify best practices for achieving climate-smart agriculture and water quality goals without sacrificing crop production. The scientific innovations will be achieved through four objectives. First, a Knowledge-Guided Machine Learning (KGML)-based INSPIRE-Field model will be developed to significantly improve the prediction accuracy of field-level C, N, P, and hydrological interactions. Second, INSPIRE-Field will be coupled with Graph Neural Network (GNN)-based hydrologic surrogate models that first aggregate field water and nutrient fluxes within small watersheds (i.e., INSPIRE-Watershed), and then routing watershed outputs throughout the Upper Mississippi River Basin (i.e., INSPIRE-Basin). To reduce the uncertainty of INSPIRE, a novel representation learning method to efficiently assimilate remote and in-situ sensing data via low-dimensional embeddings will be explored. Third, a user-friendly web interface will be developed that allows stakeholders to preview outcomes of different climate- smart management practices and identify field-specific preferred management strategies based on multiobjective optimizations for C, N, P, and hydrological goals. Finally, the education and practice of computing, sensing, and machine learning among the future workforce of agroecosystem engineers, educators, and decision-makers will be enhanced through project activities. The investigator aims to lead the frontier of data analytics for sustainable agriculture by integrating remote sensing, mechanistic modeling, and artificial intelligence, with the aspiration to enable monitoring and managing every cropland, track pollutants, forecast agricultural risks, provide farmers best solutions to minimize negative environmental impacts, and ultimately help the world to achieve a sustainable food future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候智能型农业实践有望减少农业碳 (C) 排放,但其实施往往会带来复杂的权衡,特别是影响氮 (N) 和磷 (P) 管理。一些知识和技术差距阻碍了对碳、氮和磷的综合管理,以确保气候智能型作物生产,同时保护清洁的水源。为了找到应对这一重大挑战的解决方案,该项目旨在显着推进对密西西比河流域上游相互关联的碳、氮、磷和水循环的整体理解和建模。为了实现这一目标,我们将开发一个基于人工智能的弹性农业生态系统综合养分、水流和地块模拟框架 (INSPIRE),该框架可以轻松吸收多源观测结果,并提供从田间到盆地规模的准确、快速的量化。该项目的成果预计将为政策制定者和农业社区提供宝贵的见解,特别是在优化管理实践以改善美国中心地带的碳固存、土壤健康和水质方面。此外,该项目将其研究目标与教育议程交织在一起,其特点是开发一种计算工具,以促进本科生对大规模计算的广泛参与。该项目还将引入网络物理分水岭中宇宙,作为利用数字孪生技术加强与农业和环境可持续性相关的 STEM 教育的创新试验。该项目将在人工智能辅助 C、N 综合模拟的总体假设下开发。与现有基于过程的建模方法相比,P 和水通量能够更好地捕获高分辨率环境变化,并确定在不牺牲作物生产的情况下实现气候智能型农业和水质目标的最佳实践。科学创新将通过四个目标来实现。首先,将开发基于知识引导机器学习(KGML)的 INSPIRE-Field 模型,以显着提高现场级 C、N、P 和水文相互作用的预测精度。其次,INSPIRE-Field 将与基于图神经网络 (GNN) 的水文替代模型相结合,该模型首先聚合小流域(即 INSPIRE-Watershed)内的田间水和养分通量,然后在整个密西西比河流域上游路由流域输出(即 INSPIRE-盆地)。为了减少 INSPIRE 的不确定性,将探索一种新颖的表示学习方法,通过低维嵌入有效地同化远程和现场传感数据。第三,将开发一个用户友好的网络界面,使利益相关者能够预览不同气候智能管理实践的结果,并根据 C、N、P 和水文目标的多目标优化确定特定领域的首选管理策略。最后,未来农业生态系统工程师、教育工作者和决策者的计算、传感和机器学习教育和实践将通过项目活动得到加强。研究人员旨在通过整合遥感、机械建模和人工智能,引领可持续农业数据分析的前沿,希望能够监测和管理每块农田,跟踪污染物,预测农业风险,为农民提供最佳解决方案,以最大限度地减少负面影响该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenong Jin其他文献

The important but weakening maize yield benefit of grain filling prolongation in the US Midwest
美国中西部籽粒灌浆期延长带来的重要但正在减弱的玉米产量效益
  • DOI:
    10.1111/gcb.14356
  • 发表时间:
    2018-07-03
  • 期刊:
  • 影响因子:
    11.6
  • 作者:
    P. Zhu;Zhenong Jin;Q. Zhuang;P. Ciais;C. Bernacchi;Xuhui Wang;D. Makowski;D. Lobell
  • 通讯作者:
    D. Lobell
Double Hopf bifurcation induced by spatial memory in a diffusive predator-prey model with Allee effect and maturation delay of predator
具有 Allee 效应和捕食者成熟延迟的扩散捕食者-被捕食者模型中空间记忆引起的双 Hopf 分岔
The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield
地形、土壤和遥感植被状况对预测作物产量的作用
  • DOI:
    10.1016/j.fcr.2020.107788
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    T. Franz;Sayli Pokal;Justin Gibson;Yuzhen Zhou;H. Gholizadeh;F. A. Tenorio;D. Rudnick;D. Heeren;M. Mccabe;M. Ziliani;Zhenong Jin;K. Guan;M. Pan;J. Gates;B. Wardlow
  • 通讯作者:
    B. Wardlow
Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season
青藏高原高山湿地的甲烷排放:非生长季节被忽视但至关重要的贡献
  • DOI:
    10.1002/2015jg003043
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weimin Song;Hao Wang;Guangshuai Wang;Litong Chen;Zhenong Jin;Q. Zhuang;Jinsheng He
  • 通讯作者:
    Jinsheng He
Early- and in-season crop type mapping without current-year ground truth: generating labels from historical information via a topology-based approach
没有当年地面事实的早熟和当季作物类型映射:通过基于拓扑的方法从历史信息生成标签
  • DOI:
    10.1016/j.rse.2022.112994
  • 发表时间:
    2021-10-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chenxi Lin;Liheng Zhong;Xiao‐peng Song;Jinwei Dong;D. Lobell;Zhenong Jin
  • 通讯作者:
    Zhenong Jin

Zhenong Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenong Jin', 18)}}的其他基金

SitS: Spatial and Temporal Patterns of Soil N and P Cycles Quantified by a Sensor-Model Fusion Framework: Implications for Sustainable Nutrient Management
SitS:通过传感器模型融合框架量化土壤 N 和 P 循环的时空模式:对可持续养分管理的影响
  • 批准号:
    2034385
  • 财政年份:
    2021
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant

相似国自然基金

人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
  • 批准号:
    72303127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
  • 批准号:
    22303102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
教育人工智能背景下课程智慧大脑构建研究
  • 批准号:
    62367003
  • 批准年份:
    2023
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
人工智能驱动的PDE4抑制剂设计及抗肺纤维化作用研究
  • 批准号:
    82304384
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
知识型员工与人工智能合作中的管理挑战:信任难题、责任难题与技术框架
  • 批准号:
    72302217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 50.96万
  • 项目类别:
    EU-Funded
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
  • 批准号:
    10112272
  • 财政年份:
    2024
  • 资助金额:
    $ 50.96万
  • 项目类别:
    SME Support
NeuReader: Eye Tracking Enabled Explainable-AI for Empowering Resource Scarce Neurological Healthcare in Pakistan
NeuReader:眼动追踪支持可解释人工智能,为巴基斯坦资源稀缺的神经医疗保健提供支持
  • 批准号:
    EP/Y002865/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Research Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant
SaTC: EDU: AI for Cybersecurity Education via an LLM-enabled Security Knowledge Graph
SaTC:EDU:通过支持 LLM 的安全知识图进行网络安全教育的人工智能
  • 批准号:
    2335666
  • 财政年份:
    2024
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了