Nano-scale imaging with Hong-Ou-Mandel Interferometry

使用红欧曼德尔干涉仪进行纳米级成像

基本信息

  • 批准号:
    EP/R030081/1
  • 负责人:
  • 金额:
    $ 53.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

This project is targeted at establishing the fundamental limits of quantum interferometry, with particular emphasis on the specific and widespread Hong-Ou-Mandel (HOM) interferometer. We will show that quantum HOM interferometry enables extremely precise depth and thickness measurements in an optical microscope. We then propose to use this approach to build a non-invasive optical imaging system that will provide sub-nanometer precision, improving upon the state-of-the-art by three orders of magnitude. To achieve our goal, we will combine customised quantum optical interference with new advanced statistical analysis tools. We will also integrate the latest ultra-sensitive single-photon detector array sensors into the imaging system to provide unprecedented sensitivity and temporal resolution. This interdisciplinary research brings together experimental and theoretical physicists to develop the optical systems, sources and underlying models, and biologists as end users of the technology.Our research relies on quantum interference of indistinguishable single photons, known as Hong-Ou-Mandel interference, which can give very precise information about the thickness of an unknown sample. The principle works by using two identical photons, which are produced at exactly the same time. If one of the photons is delayed with respect to the other due to transmission through a sample of unknown thickness, the properties of the sample can be established by detailed analysis of the interference pattern when the two photons are brought back together. Furthermore, the precise form of the interference pattern, and consequently the precision of the measurement, can be controlled by customising the spectral properties of the single photons. Generally, this method provides high temporal precision with a large dynamic range, yet does not suffer from phase instability between the two photons. While this phenomenon has been known for many years, the tools to reach its fundamental limits have not yet been developed. To reach the boundaries of this optical method, we will develop custom photon sources to provide tailored quantum interference patterns and develop new analysis procedures based on the Fisher information associated with the data. The Fisher information is a statistical approach for assessing how much information about an unknown parameter is available in measured data. In any physical system, one builds a model that includes a number of parameters, and in our imaging system, the thickness of the sample will be the key quantity that we wish to establish. Small changes to the thickness of the sample will result in small changes to the observed data and by analysing the Fisher information, we will be able to reach the ultimate precision provided by information theory. We predict this ultimate limit to be sub-nanometer in precision.In the final stages of the project, we will also measure a series of biological samples. Accurately establishing cell, protein, and DNA morphology is vital for determining the performance of biological systems. It is well known that the structural form of DNA plays a crucial role in its functionality. DNA can be prepared in various forms and can take the shape of strands or more convoluted structures, such as for example DNA origami. The DNA strands therefore occupy different volumes and thicknesses at the nanometer level. After metrology of defined 'ground truth' DNA origami structures, we will extend our study to that of chromatin structures in vitro.
该项目的目标是建立量子干涉法的基本限制,特别强调了特定和广泛的Hong-Ou-Mandel(HOM)干涉仪。我们将证明量子HOM干涉法实现了光学显微镜中极为精确的深度和厚度测量。然后,我们建议使用这种方法来构建一个非侵入性光学成像系统,该系统将提供子纳米计精度,从而通过三个数量级来改善最先进的时间。为了实现我们的目标,我们将将定制的量子光学干扰与新的高级统计分析工具结合使用。我们还将将最新的超敏感单光子检测器阵列传感器整合到成像系统中,以提供前所未有的灵敏度和时间分辨率。这项跨学科研究汇集了实验和理论物理学家,以开发光学系统,来源和潜在的模型,生物学家作为技术的最终用户。我们的研究依赖于可见的单个光子的量子干扰,称为Hong-Ou-Mandel干扰,这可以提供有关未知样品厚度的非常精确的信息。该原理通过使用两个相同的光子来起作用,这些光子是完全同时产生的。如果由于通过未知厚度的样品传输而导致另一个光子延迟相对于另一个光子,则可以通过对两个光子重新聚集在一起的干扰模式来确定样品的性质。此外,可以通过自定义单个光子的光谱特性来控制干扰模式的精确形式,并因此可以控制测量的精度。通常,该方法提供了具有较大动态范围的高时间精度,但并不遭受两个光子之间的相位不稳定性。尽管这种现象已有多年了,但达到其基本限制的工具尚未开发出来。为了达到这种光学方法的边界,我们将开发自定义的光子源以提供定制的量子干扰模式,并根据与数据相关的Fisher信息制定新的分析程序。 Fisher信息是一种统计方法,用于评估在测量数据中获得有关未知参数的多少信息。在任何物理系统中,都会构建一个包含许多参数的模型,在我们的成像系统中,样本的厚度将是我们希望建立的关键数量。对样本厚度的微小变化将导致观察到的数据的小变化,并通过分析Fisher信息,我们将能够达到信息理论提供的最终精度。我们将这种最终限制预测为精确度。在项目的最后阶段,我们还将测量一系列的生物样品。准确地建立细胞,蛋白质和DNA形态对于确定生物系统的性能至关重要。众所周知,DNA的结构形式在其功能中起着至关重要的作用。 DNA可以以各种形式制备,并且可以采用链或更复杂的结构(例如DNA折纸)的形状。因此,DNA链在纳米水平上占据不同的体积和厚度。在定义的“地面真实” DNA折纸结构的计量学之后,我们将将研究扩展到体外染色质结构的研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Manipulation and Certification of High-Dimensional Entanglement through a Scattering Medium
通过散射介质操纵和验证高维纠缠
  • DOI:
    10.1103/prxquantum.4.010308
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Courme B
  • 通讯作者:
    Courme B
Polarization entanglement-enabled quantum holography
  • DOI:
    10.1038/s41567-020-01156-1
  • 发表时间:
    2021-02-04
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Defienne, Hugo;Ndagano, Bienvenu;Faccio, Daniele
  • 通讯作者:
    Faccio, Daniele
Arbitrary spatial mode sorting in a multimode fiber
  • DOI:
    10.1103/physreva.101.063830
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    H. Defienne;D. Faccio
  • 通讯作者:
    H. Defienne;D. Faccio
Pixel super-resolution with spatially entangled photons.
  • DOI:
    10.1038/s41467-022-31052-6
  • 发表时间:
    2022-06-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
  • 通讯作者:
Full-field quantum imaging with a single-photon avalanche diode camera
  • DOI:
    10.1103/physreva.103.042608
  • 发表时间:
    2021-04-13
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Defienne, Hugo;Zhao, Jiuxuan;Faccio, Daniele
  • 通讯作者:
    Faccio, Daniele
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniele Faccio其他文献

Energy transport in diffusive waveguides
扩散波导中的能量传输
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin J. Mitchell;Vytautas Gradauskas;J. Radford;I. Starshynov;Samuel Nerenberg;Ewan M. Wright;Daniele Faccio
  • 通讯作者:
    Daniele Faccio
Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids.
液体中强飞秒激光脉冲引起的空化动力学和定向微泡喷射。
Cholesteric Liquid Crystal Based Reconfigurable Optical Combiner for Head-Mounted Display Application
用于头戴式显示器应用的基于胆甾型液晶的可重构光学组合器
Spacetime geometries and light trapping in travelling refractive index perturbations
行进折射率扰动中的时空几何和光捕获
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Cacciatori;F. Belgiorno;V. Gorini;Giovanni Ortenzi;Luca Rizzi;V. G. Sala;Daniele Faccio
  • 通讯作者:
    Daniele Faccio
Multielectrode Multiplexing for Bioimpedance Surface Topography Mapping
用于生物阻抗表面形貌测绘的多电极复用
  • DOI:
    10.1109/biosensors58001.2023.10280912
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steven S. Wong;J. Radford;Daniele Faccio;T. Constandinou;Jinendra Ekanayake
  • 通讯作者:
    Jinendra Ekanayake

Daniele Faccio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniele Faccio', 18)}}的其他基金

Quantum-enabled nano-scale rheology of the microbial seawater environment
微生物海水环境的量子纳米级流变学
  • 批准号:
    EP/X035905/1
  • 财政年份:
    2023
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Research Grant
Boson Sampling and Quantum Imaging for Complex Biological Systems
复杂生物系统的玻色子采样和量子成像
  • 批准号:
    EP/Y029097/1
  • 财政年份:
    2023
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Research Grant
Looking and Listening in Complex Media
在复杂媒体中看和听
  • 批准号:
    EP/S026444/1
  • 财政年份:
    2019
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Research Grant
Black Hole Superradiance in Rotating Fluids (SURF)
旋转流体中的黑洞超辐射 (SURF)
  • 批准号:
    EP/P006078/2
  • 财政年份:
    2017
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Research Grant
Black Hole Superradiance in Rotating Fluids (SURF)
旋转流体中的黑洞超辐射 (SURF)
  • 批准号:
    EP/P006078/1
  • 财政年份:
    2016
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Research Grant
Ultrafast Imaging using Arrayed Quantum Detection Technologies (ULTRA-IMAGE)
使用阵列量子检测技术的超快成像 (ULTRA-IMAGE)
  • 批准号:
    EP/M006514/1
  • 财政年份:
    2015
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Research Grant
Hawking Radiation in Dielectric Horizon Analogues
电介质视界类似物中的霍金辐射
  • 批准号:
    EP/J00443X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Research Grant

相似国自然基金

基于光学成像的大规模活体细胞跟踪及其对细胞行为的定量分析
  • 批准号:
    82302255
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
大规模行—列寻址智能超声传感器及缺陷超分辨率成像关键技术研究
  • 批准号:
    52175511
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
大规模行-列寻址智能超声传感器及缺陷超分辨率成像关键技术研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
大规模真三维视频获取与集成成像显示关键理论与技术
  • 批准号:
    61631009
  • 批准年份:
    2016
  • 资助金额:
    265.0 万元
  • 项目类别:
    重点项目
大规模成像光谱图像的安全检索关键技术研究
  • 批准号:
    61370189
  • 批准年份:
    2013
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目

相似海外基金

A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
  • 批准号:
    23K17398
  • 财政年份:
    2023
  • 资助金额:
    $ 53.95万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Natural Plasma Nano-EVs for Drug Delivery
用于药物输送的天然血浆纳米电动汽车
  • 批准号:
    10698612
  • 财政年份:
    2023
  • 资助金额:
    $ 53.95万
  • 项目类别:
Chip-Scale Intraoperative Optical Navigation with Immunotargeted Upconverting Nanoparticles
使用免疫靶向上转换纳米颗粒的芯片级术中光学导航
  • 批准号:
    10743477
  • 财政年份:
    2023
  • 资助金额:
    $ 53.95万
  • 项目类别:
Dodecafluoropentane emulsion (DDFPe), NanO2™ as Cerebroprotectant in Ischemic Stroke
十二氟戊烷乳液 (DDFPe)、NanO2™ 作为缺血性中风的脑保护剂
  • 批准号:
    10591442
  • 财政年份:
    2023
  • 资助金额:
    $ 53.95万
  • 项目类别:
Long-Acting, Short-Residing Nanochelators for Iron Overload Therapy
用于铁过载治疗的长效、短效纳米螯合剂
  • 批准号:
    10585319
  • 财政年份:
    2023
  • 资助金额:
    $ 53.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了