Quantum-enabled nano-scale rheology of the microbial seawater environment
微生物海水环境的量子纳米级流变学
基本信息
- 批准号:EP/X035905/1
- 负责人:
- 金额:$ 40.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite appearances, a single drop of seawater is teeming with life. Even more surprising perhaps, is that this microscopic life has a huge influence on both the oceans and our climate. Microorganisms such as phytoplankton and bacteria interact with each other in complex ways that ultimately determine both productivity (how much algae is available at the base of the food web, leading to differences in fish populations and fisheries) and carbon storage in the deep ocean (helping to mitigate climate change). Over the past few decades we have come to realise that these microorganisms live in a world that is patchy - that is their food sources and predators are not spread evenly, even at scales of around 100 micrometres (1/10 of a mm). This microscale patchiness is strongly determined by the way nutrients and other chemicals move at smaller, even nanometric scales.We have recently developed a novel quantum sensing scheme that, when combined with a specific class of fluorescent molecules, can sense nano-scale viscosity in water-environments, therefore outclassing previous classical techniques that can only operate at the micro-scale or at very high viscosities. We aim to further improve our recent demonstration of this technique by optimising the photon sources and also the sensors for the detection of photon pairs.Therefore, by using a range of cutting-edge quantum sensing techniques we will be able to obtain a clear idea of what the nanoscale and microscale environment looks like to a microbe. We will take advantage of new methods to measure viscosity at small scales, microfluidic devices that now allow us to study behavioural responses of individual microbes and of populations in the lab, and novel theory to demonstrate the existence of these processes in real life. Our aim is to consolidate a new field of quantum-enabled nanorheology and to then use this to reveal the 'hidden' impact of small-scale differences in viscosity on the interactions between marine microorganisms and ultimately ocean and climate dynamics. The results generated by this project will improve our understanding of marine microbial interactions in localised areas, but will also help inform global biogeochemical and climate models that rely on accurate estimates of microbial productivity.
尽管出现了,但一滴海水仍充满生命。也许更令人惊讶的是,这种微观生活对海洋和我们的气候都有巨大的影响。诸如浮游植物和细菌等微生物以复杂的方式相互相互作用,最终决定了生产力(在食物网的底部有多少藻类,导致鱼群种群和渔业的差异)和深海中的碳存储差异(有助于缓解气候变化)。在过去的几十年中,我们已经意识到,这些微生物生活在一个斑驳的世界中 - 即使在大约100微米(1/10毫米)的尺度上,他们的食物来源和捕食者也不会均匀散布。这种显微镜斑块是由营养和其他化学物质以较小甚至纳米尺度移动的方式来确定的。我们最近开发了一种新型的量子传感方案,当与特定类别的荧光分子结合使用时,它可以感觉到纳米规模的粘度,因此可以在先前的经典技术中高高地位或高较高的访问量来进行水平的速度。我们旨在通过优化光子源以及检测光子对的传感器来进一步改善我们对该技术的最新演示。因此,通过使用一系列尖端的量子传感技术,我们将能够清楚地了解纳米级和微观环境对微生物的外观。我们将利用新方法来测量小尺度,微流体设备的粘度,这些设备现在使我们能够研究实验室中单个微生物和人群的行为反应,以及新的理论以证明这些过程在现实生活中的存在。我们的目的是巩固一个新的支持量子的纳米干酪学领域,然后使用它来揭示小型粘度差异对海洋微生物以及最终海洋和气候动态之间相互作用的“隐藏”影响。该项目产生的结果将提高我们对本地区域中海洋微生物相互作用的理解,但还将有助于为全球生物地球化学和气候模型提供依赖于微生物生产力的准确估计的全球生物地球化学模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniele Faccio其他文献
Energy transport in diffusive waveguides
扩散波导中的能量传输
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kevin J. Mitchell;Vytautas Gradauskas;J. Radford;I. Starshynov;Samuel Nerenberg;Ewan M. Wright;Daniele Faccio - 通讯作者:
Daniele Faccio
Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids.
液体中强飞秒激光脉冲引起的空化动力学和定向微泡喷射。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Daniele Faccio;G. Tamosauskas;E. Rubino;J. Darginavičius;D. Papazoglou;D. Papazoglou;S. Tzortzakis;S. Tzortzakis;A. Couairon;A. Dubietis - 通讯作者:
A. Dubietis
Cholesteric Liquid Crystal Based Reconfigurable Optical Combiner for Head-Mounted Display Application
用于头戴式显示器应用的基于胆甾型液晶的可重构光学组合器
- DOI:
10.1109/vrw62533.2024.00158 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuanjie Xia;Haobo Li;Marija Vaškevičiūte;Daniele Faccio;A. Karimullah;Hadi Heidari;R. Ghannam - 通讯作者:
R. Ghannam
Spacetime geometries and light trapping in travelling refractive index perturbations
行进折射率扰动中的时空几何和光捕获
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
S. Cacciatori;F. Belgiorno;V. Gorini;Giovanni Ortenzi;Luca Rizzi;V. G. Sala;Daniele Faccio - 通讯作者:
Daniele Faccio
Multielectrode Multiplexing for Bioimpedance Surface Topography Mapping
用于生物阻抗表面形貌测绘的多电极复用
- DOI:
10.1109/biosensors58001.2023.10280912 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Steven S. Wong;J. Radford;Daniele Faccio;T. Constandinou;Jinendra Ekanayake - 通讯作者:
Jinendra Ekanayake
Daniele Faccio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniele Faccio', 18)}}的其他基金
Boson Sampling and Quantum Imaging for Complex Biological Systems
复杂生物系统的玻色子采样和量子成像
- 批准号:
EP/Y029097/1 - 财政年份:2023
- 资助金额:
$ 40.72万 - 项目类别:
Research Grant
Looking and Listening in Complex Media
在复杂媒体中看和听
- 批准号:
EP/S026444/1 - 财政年份:2019
- 资助金额:
$ 40.72万 - 项目类别:
Research Grant
Nano-scale imaging with Hong-Ou-Mandel Interferometry
使用红欧曼德尔干涉仪进行纳米级成像
- 批准号:
EP/R030081/1 - 财政年份:2018
- 资助金额:
$ 40.72万 - 项目类别:
Research Grant
Black Hole Superradiance in Rotating Fluids (SURF)
旋转流体中的黑洞超辐射 (SURF)
- 批准号:
EP/P006078/2 - 财政年份:2017
- 资助金额:
$ 40.72万 - 项目类别:
Research Grant
Black Hole Superradiance in Rotating Fluids (SURF)
旋转流体中的黑洞超辐射 (SURF)
- 批准号:
EP/P006078/1 - 财政年份:2016
- 资助金额:
$ 40.72万 - 项目类别:
Research Grant
Ultrafast Imaging using Arrayed Quantum Detection Technologies (ULTRA-IMAGE)
使用阵列量子检测技术的超快成像 (ULTRA-IMAGE)
- 批准号:
EP/M006514/1 - 财政年份:2015
- 资助金额:
$ 40.72万 - 项目类别:
Research Grant
Hawking Radiation in Dielectric Horizon Analogues
电介质视界类似物中的霍金辐射
- 批准号:
EP/J00443X/1 - 财政年份:2012
- 资助金额:
$ 40.72万 - 项目类别:
Research Grant
相似海外基金
A bio-nano-enabled microcarrier for microplastic degradation
用于微塑料降解的生物纳米微载体
- 批准号:
EP/Y016599/1 - 财政年份:2023
- 资助金额:
$ 40.72万 - 项目类别:
Fellowship
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
- 批准号:
10658204 - 财政年份:2023
- 资助金额:
$ 40.72万 - 项目类别:
Quantum-enabled Nano-scale Rheology Of The Microbial Seawater Environment
微生物海水环境的量子纳米级流变学
- 批准号:
EP/X035689/1 - 财政年份:2023
- 资助金额:
$ 40.72万 - 项目类别:
Research Grant
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
- 批准号:
RGPIN-2019-06345 - 财政年份:2022
- 资助金额:
$ 40.72万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: ISS: Biofilm Inhibition with Germicidal Light Side-Emitted from Nano-enabled Flexible Optical Fibers in Water Systems
合作研究:ISS:水系统中纳米柔性光纤侧面发射的杀菌光抑制生物膜
- 批准号:
2224240 - 财政年份:2022
- 资助金额:
$ 40.72万 - 项目类别:
Standard Grant