Towards the Computational Design of Highly Emissive Organic-Single Crystals

高发射有机单晶的计算设计

基本信息

  • 批准号:
    EP/R029385/1
  • 负责人:
  • 金额:
    $ 25.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Summary Light emitting materials find applications in display technologies, optical communication, data storage, biological sensing and solid-state lasing. Organic conjugate molecular systems represent versatile blocks for the development of cheap and flexible functional materials. In particular, their single crystals (OSCs) can exhibit favourable properties with respect to their amorphous counterparts such as better thermal and photochemical stabilities, large refractive indexes, highly polarised emission, and enhanced charge-carrier mobility. However, their emissive properties are severely affected by nonradiative mechanisms facilitating a fast conversion to the ground state. These mechanisms include aggregation-induced quenching, intersystem crossing and internal conversion. New strategies for the design of highly emissive OSCs should provide routes to minimise deactivation through these pathways. The development of fluorophores with an enhanced emissive response in the solid state has become a very active area of research. Fluorophores displaying excited state intramolecular proton transfer have shown promising properties as solid-state lasers (ESIPT-OCSs). But in order to achieve a rational design of these materials, a fundamental understanding of the underlying phenomena at the molecular and crystal levels is required. Computational modelling can aid materials design proposing candidate structures with tailored properties. Predictive models for emissive materials should include the effect of nonadiabatic and excitonic effects. Despite their potential applications, there is a lack of general computational tools to study phenomena at the interface between molecular photochemistry and material sciences. The primary goal of this research programme is to develop computational chemistry strategies towards the design of efficient emissive OCSs. We will achieve this by developing a systematic investigation of nonradiative mechanisms in model ESIPT-OCSs materials and producing new software for the exploration of excited states and nonadiabatic phenomena in the crystal environment considering electrostatic embedding techniques. The codes will be made freely available to the community through open access repositories. Mechanisms for aggregation induced phenomena in the solid-state will be investigated with a focus on establishing structural features enhancing the emissive response. The role of intramolecular (substituents, geometry) and intermolecular (weak interactions and crystal packing) factors affecting the nonradiative deactivation pathways will be considered. Based on this new knowledge and assisted by the computational tools, candidates for highly emissive materials will be proposed and tested by our experimental collaborators, providing feedback to examine our predictions. In the longer term, all these strategies will open up new possibilities in the design of OCSs materials with tailored properties.
摘要 发光材料可应用于显示技术、光通信、数据存储、生物传感和固态激光。有机共轭分子系统代表了开发廉价且灵活的功能材料的通用模块。特别是,它们的单晶(OSC)相对于非晶对应物表现出有利的特性,例如更好的热稳定性和光化学稳定性、大折射率、高偏振发射和增强的载流子迁移率。然而,它们的发射特性受到促进快速转换到基态的非辐射机制的严重影响。这些机制包括聚集诱导的猝灭、系间交叉和内部转换。高发射 OSC 设计的新策略应提供尽量减少通过这些途径失活的途径。开发具有增强固态发射响应的荧光团已成为一个非常活跃的研究领域。显示激发态分子内质子转移的荧光团已显示出作为固态激光器(ESIPT-OCS)的有前途的特性。但为了实现这些材料的合理设计,需要对分子和晶体水平上的基本现象有基本的了解。计算建模可以帮助材料设计提出具有定制特性的候选结构。发射材料的预测模型应包括非绝热效应和激子效应。尽管它们具有潜在的应用,但仍缺乏通用的计算工具来研究分子光化学和材料科学之间的界面现象。该研究项目的主要目标是开发计算化学策略来设计高效发射 OCS。我们将通过对 ESIPT-OCS 材料模型中的非辐射机制进行系统研究,并考虑静电嵌入技术,开发新的软件来探索晶体环境中的激发态和非绝热现象,从而实现这一目标。这些代码将通过开放获取存储库免费向社区提供。将研究固态聚集诱导现象的机制,重点是建立增强发射响应的结构特征。将考虑影响非辐射失活途径的分子内(取代基、几何形状)和分子间(弱相互作用和晶体堆积)因素的作用。基于这些新知识并在计算工具的协助下,我们的实验合作者将提出并测试高发射材料的候选材料,并提供反馈以检验我们的预测。从长远来看,所有这些策略将为设计具有定制特性的 OCS 材料开辟新的可能性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fromage: A Library for the Study of Molecular Crystal Excited States at the Aggregate Scale
Fromage:用于研究聚集尺度分子晶体激发态的库
  • DOI:
    10.26434/chemrxiv.9786041
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Crespo Otero R
  • 通讯作者:
    Crespo Otero R
Excited State Mechanisms in Crystalline Carbazole: The Role of Aggregation and Isomeric Defects
晶体咔唑的激发态机制:聚集和异构缺陷的作用
  • DOI:
    10.26434/chemrxiv.14575992
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Crespo Otero R
  • 通讯作者:
    Crespo Otero R
Rotaxane CoII Complexes as Field-Induced Single-Ion Magnets
作为场感应单离子磁体的 Rotaxane CoII 配合物
  • DOI:
    10.26434/chemrxiv.14230058.v1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cirulli M
  • 通讯作者:
    Cirulli M
Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles.
  • DOI:
    10.1021/acs.jctc.2c00804
  • 发表时间:
    2022-11-08
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Barbatti, Mario;Bondanza, Mattia;Crespo-Otero, Rachel;Demoulin, Baptiste;Dral, Pavlo O.;Granucci, Giovanni;Kossoski, Fabris;Lischka, Hans;Mennucci, Benedetta;Mukherjee, Saikat;Pederzoli, Marek;Persico, Maurizio;Pinheiro, Max;Pittner, Jiri;Plasser, Felix;Gil, Eduarda Sangiogo;Stojanovic, Ljiljana
  • 通讯作者:
    Stojanovic, Ljiljana
Molecular and crystalline requirements for solid state fluorescence exploiting excited state intramolecular proton transfer
  • DOI:
    10.26434/chemrxiv.8283710
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    M. Dommett;M. Rivera;Matthew T. H. Smith;R. Crespo‐Otero
  • 通讯作者:
    M. Dommett;M. Rivera;Matthew T. H. Smith;R. Crespo‐Otero
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Crespo-Otero其他文献

Rachel Crespo-Otero的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于多精度计算机试验的航空设备多函数型响应质量设计研究
  • 批准号:
    72371128
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
超宽禁带半导体固溶体合金中p型透明导电氧化物材料设计与计算分析
  • 批准号:
    12374074
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于机器学习和相图计算耦合方法的γ′相强化型高熵高温合金的加速设计及其性能研究
  • 批准号:
    52371007
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于多尺度计算模型设计仿I型胶原蛋白的纳米纤维
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    64 万元
  • 项目类别:
    面上项目
基于计算机试验的函数型响应稳健参数和容差一体化设计研究
  • 批准号:
    71902089
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Towards a cure for Malaria: Computational Design and Synthes
治愈疟疾:计算设计和合成
  • 批准号:
    2607115
  • 财政年份:
    2021
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Studentship
Towards computational design of catalyst layers for polymer electrolyte membrane fuel cells: linking multi-scale modeling and additive manufacturing
聚合物电解质膜燃料电池催化剂层的计算设计:连接多尺度建模和增材制造
  • 批准号:
    563665-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Alliance Grants
Towards a quantum-mechanical understanding of proton-coupled electron transfer and transition metal reactivity in biological processes
对生物过程中质子耦合电子转移和过渡金属反应性的量子力学理解
  • 批准号:
    10386836
  • 财政年份:
    2021
  • 资助金额:
    $ 25.85万
  • 项目类别:
A data-driven approach towards generation of permeable peptide therapeutics
生成可渗透肽疗法的数据驱动方法
  • 批准号:
    10241206
  • 财政年份:
    2021
  • 资助金额:
    $ 25.85万
  • 项目类别:
A Mixed Methods Design for Computational Genre Stylistics and Unstructured Genres. Towards a Functional History of 19th Century German Novellas.
计算流派文体学和非结构化流派的混合方法设计。
  • 批准号:
    449668519
  • 财政年份:
    2020
  • 资助金额:
    $ 25.85万
  • 项目类别:
    WBP Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了