Towards the Computational Design of Highly Emissive Organic-Single Crystals

高发射有机单晶的计算设计

基本信息

  • 批准号:
    EP/R029385/1
  • 负责人:
  • 金额:
    $ 25.85万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Summary Light emitting materials find applications in display technologies, optical communication, data storage, biological sensing and solid-state lasing. Organic conjugate molecular systems represent versatile blocks for the development of cheap and flexible functional materials. In particular, their single crystals (OSCs) can exhibit favourable properties with respect to their amorphous counterparts such as better thermal and photochemical stabilities, large refractive indexes, highly polarised emission, and enhanced charge-carrier mobility. However, their emissive properties are severely affected by nonradiative mechanisms facilitating a fast conversion to the ground state. These mechanisms include aggregation-induced quenching, intersystem crossing and internal conversion. New strategies for the design of highly emissive OSCs should provide routes to minimise deactivation through these pathways. The development of fluorophores with an enhanced emissive response in the solid state has become a very active area of research. Fluorophores displaying excited state intramolecular proton transfer have shown promising properties as solid-state lasers (ESIPT-OCSs). But in order to achieve a rational design of these materials, a fundamental understanding of the underlying phenomena at the molecular and crystal levels is required. Computational modelling can aid materials design proposing candidate structures with tailored properties. Predictive models for emissive materials should include the effect of nonadiabatic and excitonic effects. Despite their potential applications, there is a lack of general computational tools to study phenomena at the interface between molecular photochemistry and material sciences. The primary goal of this research programme is to develop computational chemistry strategies towards the design of efficient emissive OCSs. We will achieve this by developing a systematic investigation of nonradiative mechanisms in model ESIPT-OCSs materials and producing new software for the exploration of excited states and nonadiabatic phenomena in the crystal environment considering electrostatic embedding techniques. The codes will be made freely available to the community through open access repositories. Mechanisms for aggregation induced phenomena in the solid-state will be investigated with a focus on establishing structural features enhancing the emissive response. The role of intramolecular (substituents, geometry) and intermolecular (weak interactions and crystal packing) factors affecting the nonradiative deactivation pathways will be considered. Based on this new knowledge and assisted by the computational tools, candidates for highly emissive materials will be proposed and tested by our experimental collaborators, providing feedback to examine our predictions. In the longer term, all these strategies will open up new possibilities in the design of OCSs materials with tailored properties.
摘要发光材料在显示技术,光学通信,数据存储,生物传感和固态激光中找到应用。有机共轭分子系统代表了用于开发廉价和柔性功能材料的多功能块。特别是,它们的单晶(OSC)可以相对于它们的无定形对应物表现出有利的特性,例如更好的热和光化学稳定性,较大的折射率,高度极化的发射以及增强的电荷运营商迁移率。但是,它们的发射特性受到非赋值机制的严重影响,从而促进了快速转化为基态。这些机制包括聚集引起的淬火,间间穿越和内部转换。高度发射OSC的设计的新策略应提供通过这些途径最小化停用的途径。在固态中具有增强的发射反应的荧光团的发展已成为非常活跃的研究领域。表现出激发态分子内质子转移的荧光团显示出有希望的特性作为固态激光器(ESIPT-OCSS)。但是,为了实现这些材料的合理设计,需要对分子和晶体水平上基本现象的基本理解。计算建模可以帮助材料设计提出具有量身定制特性的候选结构。发射材料的预测模型应包括非绝热和激发效应的影响。尽管存在潜在的应用,但缺乏一般计算工具来研究分子光化学和物质科学之间界面的现象。该研究计划的主要目标是制定计算化学策略,以设计有效的发射OCS。我们将通过对模型ESIPT-OCSS材料中的非辐射机制进行系统研究,并为考虑静电嵌入技术的晶体环境中探索激发态和非绝热现象的新软件进行系统研究。这些代码将通过开放访问存储库免费提供给社区。将研究固态中聚集诱导现象的机制,重点是建立结构特征,从而增强发射反应。将考虑分子内(取代基,几何)和分子间(弱相互作用和晶体堆积)因子的作用,这些因素影响了非辐射失活途径。基于这些新知识并在计算工具的协助下,我们的实验合作者将提出和测试高度发射材料的候选人,并提供反馈以检查我们的预测。从长远来看,所有这些策略都将在具有量身定制特性的OCSS材料的设计中打开新的可能性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fromage: A Library for the Study of Molecular Crystal Excited States at the Aggregate Scale
Fromage:用于研究聚集尺度分子晶体激发态的库
  • DOI:
    10.26434/chemrxiv.9786041
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Crespo Otero R
  • 通讯作者:
    Crespo Otero R
Excited State Mechanisms in Crystalline Carbazole: The Role of Aggregation and Isomeric Defects
晶体咔唑的激发态机制:聚集和异构缺陷的作用
  • DOI:
    10.26434/chemrxiv.14575992
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Crespo Otero R
  • 通讯作者:
    Crespo Otero R
Rotaxane CoII Complexes as Field-Induced Single-Ion Magnets
作为场感应单离子磁体的 Rotaxane CoII 配合物
  • DOI:
    10.26434/chemrxiv.14230058.v1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cirulli M
  • 通讯作者:
    Cirulli M
Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles.
  • DOI:
    10.1021/acs.jctc.2c00804
  • 发表时间:
    2022-11-08
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Barbatti, Mario;Bondanza, Mattia;Crespo-Otero, Rachel;Demoulin, Baptiste;Dral, Pavlo O.;Granucci, Giovanni;Kossoski, Fabris;Lischka, Hans;Mennucci, Benedetta;Mukherjee, Saikat;Pederzoli, Marek;Persico, Maurizio;Pinheiro, Max;Pittner, Jiri;Plasser, Felix;Gil, Eduarda Sangiogo;Stojanovic, Ljiljana
  • 通讯作者:
    Stojanovic, Ljiljana
Molecular and crystalline requirements for solid state fluorescence exploiting excited state intramolecular proton transfer
  • DOI:
    10.26434/chemrxiv.8283710
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    M. Dommett;M. Rivera;Matthew T. H. Smith;R. Crespo‐Otero
  • 通讯作者:
    M. Dommett;M. Rivera;Matthew T. H. Smith;R. Crespo‐Otero
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Crespo-Otero其他文献

Rachel Crespo-Otero的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于QM/MM的计算机辅助药物设计方法对去泛素化酶(DUBs)共价小分子抑制剂的设计与研究
  • 批准号:
    82304385
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
弛豫铁电隧道结的设计、制备与面向储备池计算的动态忆阻特性研究
  • 批准号:
    52372113
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
理论计算辅助新型高强低密度γ/γ’Co基高温合金的设计与制备
  • 批准号:
    52371014
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于机器学习和相图计算耦合方法的γ′相强化型高熵高温合金的加速设计及其性能研究
  • 批准号:
    52371007
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于计算机视觉的北京老旧居住建筑立面品质测评与生成式更新设计研究
  • 批准号:
    52378022
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Towards computational design of catalyst layers for polymer electrolyte membrane fuel cells: linking multi-scale modeling and additive manufacturing
聚合物电解质膜燃料电池催化剂层的计算设计:连接多尺度建模和增材制造
  • 批准号:
    563665-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Alliance Grants
Towards a cure for Malaria: Computational Design and Synthes
治愈疟疾:计算设计和合成
  • 批准号:
    2607115
  • 财政年份:
    2021
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Studentship
Towards a quantum-mechanical understanding of proton-coupled electron transfer and transition metal reactivity in biological processes
对生物过程中质子耦合电子转移和过渡金属反应性的量子力学理解
  • 批准号:
    10386836
  • 财政年份:
    2021
  • 资助金额:
    $ 25.85万
  • 项目类别:
A data-driven approach towards generation of permeable peptide therapeutics
生成可渗透肽疗法的数据驱动方法
  • 批准号:
    10241206
  • 财政年份:
    2021
  • 资助金额:
    $ 25.85万
  • 项目类别:
A Mixed Methods Design for Computational Genre Stylistics and Unstructured Genres. Towards a Functional History of 19th Century German Novellas.
计算流派文体学和非结构化流派的混合方法设计。
  • 批准号:
    449668519
  • 财政年份:
    2020
  • 资助金额:
    $ 25.85万
  • 项目类别:
    WBP Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了