Free-particle descriptions of topological quantum matter and many-body localisation
拓扑量子物质和多体局域化的自由粒子描述
基本信息
- 批准号:EP/R020612/1
- 负责人:
- 金额:$ 59.49万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The notion of a free particle is at the heart of theoretical physics. This simple notion allows us to describe a wide variety of systems in nature: for example, we explain atoms as collections of free electrons, and electromagnetic radiation as a set of free harmonic oscillators. But in real world, particles also interact with one another. Interactions have particularly striking effects in quantum systems, where they lead to long-range correlations and quantum entanglement. This makes the theoretical description of quantum many-particle systems very challenging. At the same time, there is growing interest in using interactions as a resource that could revolutionise technology. Modern technology has been based on quantum materials such as semiconductors, superconductors and magnets, which form the building blocks of lasers, transistors, computers, etc. In recent years, there has been a shift towards making such devices more powerful by exploiting the full power of quantum physics, which will be achieved by utilising quantum correlations and entanglement. Thus, at this stage, there is a compelling theoretical and practical need to understand and manipulate the effects of interactions in quantum systems.This proposal will investigate two physical systems of current interest where interactions lead to novel physical phenomena: (1) Topological phases of matter, which include Majorana and parafermion spin chains, spin liquids and fractional quantum Hall states. These phases form as a result of "non-perturbative" effects of interactions, and cannot be described as a collection of free electrons. This gives them unique properties such as robustness under arbitrary, but sufficiently weak, perturbations. Because of this special rigidity, topological quantum matter is being used as a building block of more robust quantum technologies, designed to be resilient to environmental perturbations.(2) Non-equilibrium dynamics and thermalisation in quantum many-particle systems. Typical quantum systems are ergodic: they quickly reach thermal equilibrium because the interactions between their constituent particles quickly erase the memory of the system's initial condition. However, recent work on "many-body localisation" shows that there exist large classes of strongly-disordered, interacting quantum systems which fail to reach thermal equilibrium. These systems are thus non-ergodic, which means that quantum effects in them can persist for unusually long times, thus providing another route of protection for quantum technology.In this proposal we will develop a new approach to describe interaction effects in strongly-correlated phenomena including topological phases of matter and many-body localisation. We will advance the modelling of many-body systems in random environments using state-of-the-art numerical simulations. Our theoretical investigation on the effects of topology and many-body localisation in quantum matter will impact several experiments on cold atoms, trapped ions, defects in solids, etc. Finally, we will explore the possibility of realising phases with topological order in random environments, and propose schemes for quantum information storage and processing with an enhanced stability against thermalisation.
自由粒子的概念是理论物理学的核心。这个简单的概念使我们能够描述自然界中的各种系统:例如,我们将原子解释为自由电子的集合,将电磁辐射解释为一组自由谐振子。但在现实世界中,粒子也会相互作用。相互作用在量子系统中具有特别显着的影响,它们会导致长程关联和量子纠缠。这使得量子多粒子系统的理论描述非常具有挑战性。与此同时,人们越来越有兴趣使用交互作为一种可以彻底改变技术的资源。现代技术以半导体、超导体和磁体等量子材料为基础,它们构成了激光器、晶体管、计算机等的构建模块。近年来,人们已经转向通过充分利用能量来使这些设备变得更强大。量子物理学,这将通过利用量子相关性和纠缠来实现。因此,在现阶段,迫切需要理解和操纵量子系统中相互作用的影响。该提案将研究当前感兴趣的两个物理系统,其中相互作用导致新的物理现象:(1)拓扑相物质,包括马约拉纳和仲费米子自旋链、自旋液体和分数量子霍尔态。这些相是相互作用的“非微扰”效应的结果,不能被描述为自由电子的集合。这赋予了它们独特的属性,例如在任意但足够弱的扰动下的鲁棒性。由于这种特殊的刚性,拓扑量子物质被用作更强大的量子技术的构建模块,旨在适应环境扰动。(2) 量子多粒子系统中的非平衡动力学和热化。典型的量子系统是遍历的:它们很快达到热平衡,因为它们的组成粒子之间的相互作用很快消除了系统初始条件的记忆。然而,最近关于“多体局域化”的研究表明,存在大量的强无序、相互作用的量子系统,它们无法达到热平衡。因此,这些系统是非遍历的,这意味着它们中的量子效应可以持续异常长的时间,从而为量子技术提供另一种保护途径。在本提案中,我们将开发一种新方法来描述强相关现象中的相互作用效应包括物质的拓扑相和多体定位。我们将使用最先进的数值模拟来推进随机环境中多体系统的建模。我们对量子物质中拓扑和多体局域化效应的理论研究将影响冷原子、俘获离子、固体缺陷等方面的多项实验。最后,我们将探索在随机环境中实现拓扑序相的可能性,并提出了具有增强的热化稳定性的量子信息存储和处理方案。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Systematic construction of scarred many-body dynamics in 1D lattice models
一维晶格模型中疤痕多体动力学的系统构建
- DOI:10.48550/arxiv.1903.10491
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bull K
- 通讯作者:Bull K
Very high-energy collective states of partons in fractional quantum Hall liquids
分数量子霍尔液体中部分子的极高能集体态
- DOI:10.48550/arxiv.2111.10395
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Balram A
- 通讯作者:Balram A
Torus geometry eigenfunctions of an interacting multi-Landau level Hamiltonian
相互作用的多朗道级哈密顿量的环面几何特征函数
- DOI:10.48550/arxiv.2301.00240
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Anand A
- 通讯作者:Anand A
Universality of Z 3 parafermions via edge-mode interaction and quantum simulation of topological space evolution with Rydberg atoms
通过边缘模式相互作用实现 Z 3 平费米子的普适性以及里德伯原子拓扑空间演化的量子模拟
- DOI:10.1103/physrevresearch.5.023076
- 发表时间:2023
- 期刊:
- 影响因子:4.2
- 作者:Benhemou A
- 通讯作者:Benhemou A
Torus geometry eigenfunctions of an interacting multi-Landau-level Hamiltonian
相互作用的多朗道级哈密顿量的环面几何本征函数
- DOI:10.1103/physrevb.107.195126
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Anand A
- 通讯作者:Anand A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiannis Pachos其他文献
Jiannis Pachos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiannis Pachos', 18)}}的其他基金
Geometry and Topology in Complex Quantum Systems
复杂量子系统中的几何和拓扑
- 批准号:
EP/E019692/1 - 财政年份:2006
- 资助金额:
$ 59.49万 - 项目类别:
Research Grant
相似国自然基金
磁有序系统的对称群与新型准粒子
- 批准号:12374166
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
污染环境下多尺度气溶胶粒子散射特性研究
- 批准号:52376072
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等离激元纳米粒子动态组装自振荡体系的物理神经网络的设计与构建
- 批准号:22372133
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
软四面体胶体粒子在球形受限空间中的自组装研究
- 批准号:12374211
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于粒子激发形核的异质结构碳纳米管/铝复合材料及其强韧化机制
- 批准号:52301197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
環境浄化および有価資源リサイクルのための常磁性微粒子用の磁気分離装置の開発
开发顺磁性颗粒磁分离装置,用于环境净化和有价值的资源回收
- 批准号:
24K15358 - 财政年份:2024
- 资助金额:
$ 59.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 59.49万 - 项目类别:
Training Grant
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
- 批准号:
2334619 - 财政年份:2024
- 资助金额:
$ 59.49万 - 项目类别:
Standard Grant
Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
- 批准号:
2412046 - 财政年份:2024
- 资助金额:
$ 59.49万 - 项目类别:
Standard Grant
がん細胞を意識した変形可能粒子による物理モデルの構築
使用可变形粒子构建考虑癌细胞的物理模型
- 批准号:
24KJ0110 - 财政年份:2024
- 资助金额:
$ 59.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows