Isaac Newton Institute for Mathematical Sciences

艾萨克·牛顿数学科学研究所

基本信息

  • 批准号:
    EP/R014604/1
  • 负责人:
  • 金额:
    $ 1474.28万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Mathematics, with its capacity for generality and abstract reasoning, is a subject that is unique in its ability to penetrate deep within other disciplines, to provide a common language for establishing communication channels between research communities, and in the longevity of its influence.The Isaac Newton Institute (INI) is an international hub for supporting mathematical sciences research of the highest quality and impact. It attracts world leading researchers, in all areas of mathematics and cognate disciplines, who interact through a variety of long and short thematic programmes as well as associated workshops, follow-on meetings and a plethora of one-off events. Based in Cambridge, and benefiting from a bespoke and iconic building as well as many world-leading facilities of Cambridge University, INI is nevertheless an independent forum serving the whole of UK mathematical sciences. INI celebrates its 25th anniversary this year.To the end of 2016 there had been 129 long-term programmes in total, and over 26,000 INI programme and workshop participants including 81 Rothschild Visiting Professors/Fellows, from Wolf Prize winner Vladimir Arnold in 1992 to Dijkstra Prize winning theoretical computer scientist Cynthia Dwork in 2016. Participants have also included 27 Fields Medalists, 13 Nobel Laureates, 12 Abel Prize winners, 25 Wolf Prize winners and over 50 Clay Senior Scholars as well as numerous winners of major prizes in other disciplines. This does not include unregistered participants, who are welcome to drop-in to events for a couple of days at a time.INI gives UK researchers unparalleled opportunities to work with one another and with a critical mass of leading international figures in their field, unencumbered by teaching or administrative duties. It maximizes potential for knowledge exchange and the dissemination of UK research achievements, while exposing UK early career researchers to world leaders in their discipline.A common strategic position of all Research Councils is to emphasise the importance of innovative mathematical and statistical methods to their science and in the training of young researchers. From its inception, INI's programmes and embedded workshops were demonstrably intra or interdisciplinary and conceived to accelerate research impact within the mathematical and sister sciences. Recently INI has broadened its remit to address fundamental questions in the social sciences, medicine etc. It has also concerned itself with the instigation of mechanisms to support diversity and gender equality in the sciences, and to nurture early career researchers so as to enlarge the people pipeline. The Turing Gateway to Mathematics (TGM) was created in 2013 as the knowledge exchange arm of INI. Since then it has brought the mathematical sciences community together with an impressive range of over 700 partners in business, industry, commerce and government. It has a proven set of pathways to impact, and partners with a range of organisations to assist the whole of the mathematical sciences community. Public engagement events are regularly hosted at INI, including its Rothschild Public Seminars. In addition to the 25th Anniversary events being held at the Institute, a highlight of which will be a discussion between Sir Andrew Wiles and his biographer Simon Singh, INI is organising a "road show" across the UK including talks by Keith Moore, Librarian at the Royal Society, and leading British space scientists. INI is committed to the maintenance of a reputation for creativity and mathematical excellence. This will mean continuing to deliver ground-breaking research of the highest international standard, supporting the UK mathematical sciences community both in academe and beyond, and further extending the reach of mathematics into other disciplines and applications via TGM. Throughout it will strive to maintain the culture of creativity and achievement for which it is widely recognised.

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hypocoercivity and hypocontractivity concepts for linear dynamical systems
线性动力系统的低矫顽力和低收缩性概念
High-contrast approximation for penetrable wedge diffraction
可穿透楔形衍射的高对比度近似
Reinvigorating the Wiener-Hopf technique in the pursuit of understanding processes and materials.
重振维纳-霍普夫技术以追求对工艺和材料的理解
  • DOI:
    10.1093/nsr/nwaa225
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Abrahams D;Huang X;Kisil A;Mishuris G;Nieves M;Rogosin S;Spitkovsky I
  • 通讯作者:
    Spitkovsky I
An explicit Wiener-Hopf factorization algorithm for matrix polynomials and its exact realizations within ExactMPF package.
Whitham modulation theory for the defocusing nonlinear Schrödinger equation in two and three spatial dimensions
二维和三维空间中散焦非线性薛定谔方程的 Whitham 调制理论
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

I Abrahams其他文献

I Abrahams的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('I Abrahams', 18)}}的其他基金

Additional Funding for Mathematical Sciences: Isaac Newton Institute for Mathematical Sciences
数学科学额外资助:艾萨克·牛顿数学科学研究所
  • 批准号:
    EP/V521929/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Research Grant
Ultrasonic propagation in complex media: correlated spatial distributions and multiple dispersed phases
复杂介质中的超声波传播:相关空间分布和多个分散相
  • 批准号:
    EP/M026205/1
  • 财政年份:
    2015
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Research Grant
MAPLE: MAthematics PLatform Engagement activity
MAPLE:数学平台参与活动
  • 批准号:
    EP/I01912X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Research Grant
'How to Talk Maths in Public' a Conference on Public Engagement
“如何在公共场合谈论数学”公众参与会议
  • 批准号:
    EP/H046852/1
  • 财政年份:
    2010
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Research Grant
Meet The Mathematicians Outreach Events
认识数学家外展活动
  • 批准号:
    EP/G019576/1
  • 财政年份:
    2008
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Research Grant
The Second British-French Workshop on Mathematical Techniques for Wave Problems
第二届英法波浪问题数学技术研讨会
  • 批准号:
    EP/E000266/1
  • 财政年份:
    2006
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Research Grant

相似国自然基金

黎曼流形上近端牛顿类算法的研究与应用
  • 批准号:
    12371311
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于图的高维线性回归问题的统计理论与牛顿型算法
  • 批准号:
    12301420
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非牛顿流体食品在口咽腔软湿界面的滑移机制与输运特性研究
  • 批准号:
    52375184
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
相对论Boltzmann方程的牛顿极限与流体动力学极限
  • 批准号:
    12361045
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
实现精准非牛顿微液滴生成的电场主动控制机理研究
  • 批准号:
    12302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Research Grant
Dispersive Hydrodynamics Program at the Isaac Newton Institute
艾萨克·牛顿研究所的分散流体动力学项目
  • 批准号:
    1941489
  • 财政年份:
    2020
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Standard Grant
Additional Funding for Mathematical Sciences: Isaac Newton Institute for Mathematical Sciences
数学科学额外资助:艾萨克·牛顿数学科学研究所
  • 批准号:
    EP/V521929/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Research Grant
Symplectic Geometry Workshop at the Isaac Newton Institute
艾萨克·牛顿研究所辛几何研讨会
  • 批准号:
    1727545
  • 财政年份:
    2017
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Standard Grant
Isaac Newton Institute Program on Melt in the Mantle
艾萨克·牛顿研究所地幔融化项目
  • 批准号:
    1619535
  • 财政年份:
    2016
  • 资助金额:
    $ 1474.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了