Next Generation Solid-State Batteries
下一代固态电池
基本信息
- 批准号:EP/P003532/1
- 负责人:
- 金额:$ 221.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solid-state Li-ion batteries (SSLBs) represent the ultimate in battery safety, eliminating the flammable organic electrolyte. The SSLB would find potential uses in industries where battery safety is paramount, such as the automotive industry (in cars, e-bikes and buses) and also in smaller applications where the elimination of the liquid electrolyte results in more ready compatibility with other devices, e.g., a battery on a chip or sensor. These batteries can compete with traditional lithium ion batteries in terms of volumetric energy density but they suffer from low power density. Very recently several viable inorganic solid Li-ion conducting electrolytes been identified with conductivities approaching those of liquids, which motivates this research proposal. Strategies for lowering interfacial resistances, particularly between the electrolyte and electrodes, and for building inherently scaleable devices that can be cycled multiple times, without mechanical failure, are now urgently required to produce practical devices.This multi-institutional project brings together experienced, world-leading researchers from the University of Cambridge, the University of Oxford, and Imperial College with distinct but complementary expertise to attack a number of challenging critical issues in this field. Two classes of these solid electrolytes, oxide garnets and sulphide glass ceramics, have been found to have very high room-temperature ionic conductivities. A number of characteristics have been identified that may provide either relative benefits or disadvantages: higher-modulus materials may cycle more stably in batteries; tougher materials may be more easily brought into industrial practice; polycrystalline character may limit apparent bulk-transport rates, lowering power efficiency; interfaces may be chemically unstable, affecting long-term state of health; etc. We propose to implement fundamental studies that shed light on the relative benefits and disadvantages of the oxide and sulphide ion-conductor paradigms, using the Li6.55Ga0.15*0.3La3Zr2O12 (* = vacancy) (LLZO) garnet and the P2S5-Li2S (PSLS) glass ceramic as model materials.The project centres around three experimental work packages that focus on 1) quantifying bulk properties and making them reproducible; specifically, issues of moisture and carbon-dioxide sensitivity of the electrolytes will be addressed to produce films with reduced resistances at the interfaces between particles. LLZO and PSLS films will be contrasted, and transport through them will be investigated via a number of in operando (in situ) metrologies, e.g., 6Li tracer and NMR studies in close concert with theoretical studies of ionic transport. 2) illustrating chemistry of the solid-electrolyte/Li two-dimensional interface and probing its morphological stability over time; we seek to identify the critical parameters needed to mitigate Li-metal dendrite formation and growth, and which allow smooth Li-plating on the electrolyte surface. 3) producing tailored, cohesive three-dimensional interfaces with complex morphologies that do not crack on extensive cycling. The development of materials with much larger electrode/electrolyte contact areas will increase Li+ exchange between phases within the electrode, increasing rate performance. A multiscale modelling effort cuts across the 3 work packages, aiming to produce fundamental physical insight, synthesize experimental outputs, and guide experimental design. The goals for the theory portion are unique in the sense that the models will aim for true 'multiscale' character, integrating atomistic and continuum perspectives. Overall, the project aims to provide new new strategies to improve the performance of SSLBs but will also result in new electrolyte designs that are suitable for to protect Li metal in other so-called "beyond Li-ion" batteries such as Li-air and Li-S and smaller batteries for internet communications technologies.
固态锂离子电池 (SSLB) 代表了电池的终极安全性,消除了易燃有机电解质。 SSLB 将在电池安全至关重要的行业中找到潜在用途,例如汽车行业(汽车、电动自行车和公共汽车),以及小型应用,在这些应用中,消除液体电解质可以更容易地与其他设备兼容。例如,芯片或传感器上的电池。这些电池在体积能量密度方面可以与传统锂离子电池竞争,但它们的功率密度较低。最近,几种可行的无机固体锂离子导电电解质被发现其电导率接近液体,这激发了这项研究提案。现在迫切需要降低界面电阻(特别是电解质和电极之间的界面电阻)以及构建可多次循环且无机械故障的本质上可扩展的设备的策略来生产实用的设备。这个多机构项目汇集了经验丰富的世界各地的人员。来自剑桥大学、牛津大学和帝国理工学院的顶尖研究人员拥有独特但互补的专业知识,可以解决该领域的许多具有挑战性的关键问题。两类固体电解质,即氧化石榴石和硫化物玻璃陶瓷,已被发现具有非常高的室温离子电导率。已经确定了许多可能提供相对优点或缺点的特性:较高模量的材料可以在电池中更稳定地循环;更坚韧的材料可能更容易投入工业实践;多晶特性可能会限制表观散装传输速率,从而降低电力效率;界面可能化学不稳定,影响长期健康状况;我们建议使用 Li6.55Ga0.15*0.3La3Zr2O12 (* = 空位) (LLZO) 石榴石和 P2S5- 进行基础研究,阐明氧化物和硫化物离子导体范式的相对优点和缺点Li2S (PSLS) 玻璃陶瓷作为模型材料。该项目围绕三个实验工作包,重点关注 1) 量化整体特性并使其成为可能可重现;具体来说,将解决电解质的水分和二氧化碳敏感性问题,以生产颗粒间界面电阻降低的薄膜。将对比 LLZO 和 PSLS 薄膜,并通过许多现场(原位)计量技术研究通过它们的传输,例如与离子传输理论研究密切配合的 6Li 示踪剂和 NMR 研究。 2)说明固体电解质/锂二维界面的化学性质并探讨其随时间的形态稳定性;我们试图确定减轻锂金属枝晶形成和生长所需的关键参数,并允许在电解质表面平滑地镀锂。 3) 生成具有复杂形态的定制的、内聚的三维界面,并且在广泛的循环中不会破裂。开发具有更大电极/电解质接触面积的材料将增加电极内各相之间的 Li+ 交换,从而提高倍率性能。多尺度建模工作跨越 3 个工作包,旨在产生基本的物理洞察力、综合实验输出并指导实验设计。理论部分的目标是独特的,因为模型将瞄准真正的“多尺度”特征,整合原子论和连续体观点。总体而言,该项目旨在提供新的策略来提高 SSLB 的性能,同时也将产生新的电解质设计,适用于保护其他所谓的“超越锂离子”电池(例如锂空气电池和锂电池)中的锂金属。用于互联网通信技术的锂硫电池和小型电池。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of H 2 O-induced surface degradation in SrCoO 3 -derivatives and its impact on redox kinetics
H 2 O 诱导的 SrCoO 3 衍生物表面降解及其对氧化还原动力学的影响分析
- DOI:http://dx.10.1039/d1ta04174f
- 发表时间:2021
- 期刊:
- 影响因子:11.9
- 作者:Cavallaro A
- 通讯作者:Cavallaro A
Germanium as a donor dopant in garnet electrolytes
锗作为石榴石电解质中的供体掺杂剂
- DOI:http://dx.10.1016/j.ssi.2019.04.021
- 发表时间:2019
- 期刊:
- 影响因子:3.2
- 作者:Brugge R
- 通讯作者:Brugge R
SOLID-STATE NMR INVESTIGATION OF STRUCTURE AND DYNAMICS OF SOLID ELECTROLYTES AND COATINGS FOR LI-ION BATTERY APPLICATIONS
用于锂离子电池应用的固体电解质和涂层的结构和动力学的固态核磁共振研究
- DOI:http://dx.10.17863/cam.65611
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Emge S
- 通讯作者:Emge S
Structural Evolution of Layered Manganese Oxysulfides during Reversible Electrochemical Lithium Insertion and Copper Extrusion.
可逆电化学嵌锂和铜挤出过程中层状氧硫化锰的结构演化。
- DOI:http://dx.10.1021/acs.chemmater.1c00375
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dey S
- 通讯作者:Dey S
Structural Evolution of Layered Manganese Oxysulfides during Reversible Electrochemical Lithium Insertion and Copper Extrusion.
可逆电化学嵌锂和铜挤出过程中层状氧硫化锰的结构演化。
- DOI:http://dx.10.17863/cam.69587
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dey S
- 通讯作者:Dey S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clare Grey其他文献
Can a high-fidelity simulation tutorial improve written examination results? Review of a change in teaching practice.
高保真模拟教程能否提高笔试成绩?
- DOI:
10.12968/bjon.2022.31.13.704 - 发表时间:
2022-07-07 - 期刊:
- 影响因子:0
- 作者:
Clare Grey - 通讯作者:
Clare Grey
Energy-related catalytic and other materials: general discussion
- DOI:
10.1039/c5fd90003d - 发表时间:
2015-02 - 期刊:
- 影响因子:3.4
- 作者:
Joachim Maier;Galen Stucky;Rudolf Holze;Gang Chen;Jiafang Xie;Shi-Gang Sun;Guoxiong Wang;Beien Zhu;Yiren Zhong;Pengfei Liu;Lee Cronin;Gang Fu;Shihe Yang;Mingquan Yu;Clare Grey;Andrew Mount;Wee Shong Chin;Fuping Pan;Zhonghua Li;Zhongqun Tian;Dehui Deng;Nanfeng Zheng;Ram Seshadri;Yujiang Song;Xile Hu;Yimin Chao - 通讯作者:
Yimin Chao
Outpatient CBT for Motor Functional Neurological Disorder and Other Neuropsychiatric Conditions: A Retrospective Case Comparison.
运动功能性神经障碍和其他神经精神疾病的门诊 CBT:回顾性病例比较。
- DOI:
10.1176/appi.neuropsych.19030067 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
N. O'Connell;G. Watson;Clare Grey;Rosa Pastena;K. McKeown;A. David - 通讯作者:
A. David
Electrochemical conversion and storage systems: general discussion
- DOI:
10.1039/c5fd90001h - 发表时间:
2015-02 - 期刊:
- 影响因子:3.4
- 作者:
Andrew Mount;Shizhao Xiong;Xuyi Shan;Hyun-Wook Lee;Xiaoliang Yu;Yimin Chao;Galen Stucky;Gang Chen;Zhen Qi;Graham Hutchings;Yiren Zhong;Rudolf Holze;Wei Han;Lee Cronin;Shihe Yang;Hong Li;Xiang Hong;Erwin Reisner;Yong Yang;Weimin Xuan;Clare Grey;Ram Seshadri;Liqiang Mai;Jiafang Xie;Fuping Pan;Zhonghua Li;Joachim Maier;Zhongqun Tian;Yanxia Chen;Bingwei Mao;Heinz Frei;Changxu Lin;Fenglin Liao;Deyu Liu;Nanfeng Zheng;Rui Lin;Rose-Noelle Vannier;Dehui Deng;John M. Griffin;Nenad Markovic;Haimei Zheng;Ryoji Kanno - 通讯作者:
Ryoji Kanno
Clare Grey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clare Grey', 18)}}的其他基金
Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
- 批准号:
EP/Y024958/1 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
Fellowship
The UK Dynamic Nuclear Polarisation Magic Angle Spinning NMR Facility
英国动态核极化魔角旋转核磁共振设备
- 批准号:
EP/W021498/1 - 财政年份:2022
- 资助金额:
$ 221.09万 - 项目类别:
Research Grant
Centre for Advanced Materials for Integrated Energy Systems (CAM-IES)
集成能源系统先进材料中心 (CAM-IES)
- 批准号:
EP/P007767/1 - 财政年份:2016
- 资助金额:
$ 221.09万 - 项目类别:
Research Grant
AMorphous Silicon Alloy Anodes for Multiple Battery Systems - "AMorpheuS"
用于多种电池系统的非晶硅合金阳极 - “AMorpheuS”
- 批准号:
EP/N001583/1 - 财政年份:2015
- 资助金额:
$ 221.09万 - 项目类别:
Research Grant
Solid State NMR Studies of Disordered Solids-Ionic Conductors and Battery Materials
无序固体离子导体和电池材料的固态核磁共振研究
- 批准号:
0804737 - 财政年份:2008
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
CRC: Collaborative Research: Structure-Sorption Relationships In Disordered Iron-oxyhydroxides
CRC:合作研究:无序羟基氧化铁的结构-吸附关系
- 批准号:
0714183 - 财政年份:2007
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
- 批准号:
0506120 - 财政年份:2005
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
ACT/SGER: Improving the Lifetimes of Batteries: NMR Studies of Structure and SEI Formation
ACT/SGER:提高电池寿命:结构和 SEI 形成的 NMR 研究
- 批准号:
0442181 - 财政年份:2004
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
Purchase and Upgrade of Solid State NMR Instrumentation for Materials Chemistry and Geosciences
用于材料化学和地球科学的固态核磁共振仪器的购买和升级
- 批准号:
0321001 - 财政年份:2003
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
Solid State NMR Studies of Disordered Solids: Ionic Conductors and Battery Materials
无序固体的固态核磁共振研究:离子导体和电池材料
- 批准号:
0211353 - 财政年份:2002
- 资助金额:
$ 221.09万 - 项目类别:
Continuing Grant
相似国自然基金
新一代动态植被模型CLM5(FATES)研究未来变暖下东北地区植被反馈作用
- 批准号:42305041
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新一代深度概率模型的智能分子生成新方法及其应用研究
- 批准号:82373791
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向理想物理性能分布的新一代高性能装配技术基础理论与方法
- 批准号:52335011
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
新一代非共线性密度泛函及应用
- 批准号:22373004
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
创制可转化利用木质素基酚类化合物的新一代产油红酵母
- 批准号:22308350
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
- 批准号:
2327327 - 财政年份:2024
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
RII Track-4:NSF: Enable Next-Generation Solid-State Batteries via Dynamic Modeling and Control: Theory and Experiments
RII Track-4:NSF:通过动态建模和控制实现下一代固态电池:理论和实验
- 批准号:
2327327 - 财政年份:2024
- 资助金额:
$ 221.09万 - 项目类别:
Standard Grant
Optimized Up-scaled Technology for Next Generation Solid Oxide Electrolysis
下一代固体氧化物电解的优化放大技术
- 批准号:
10063108 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
EU-Funded
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
- 批准号:
10697560 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别:
Regulatory Mechanisms Linking Spatial Gene Control and Genome Organization
连接空间基因控制和基因组组织的调控机制
- 批准号:
10712390 - 财政年份:2023
- 资助金额:
$ 221.09万 - 项目类别: