Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
基本信息
- 批准号:10306896
- 负责人:
- 金额:$ 66.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaBRAIN initiativeBehaviorBiologicalBiophysicsBrainBrain regionCellsCodeCommunitiesComplexComputer WorkstationsComputer softwareDataData AnalysesDatabasesDocumentationEducational workshopEuropeanFAIR principlesFeedbackGoalsGraphHumanIllinoisInstitutesIntuitionLanguageLiteratureManuscriptsModalityModelingMolecularNeuronsNeurosciencesOutputPersonal ComputersPersonsPopulation DynamicsPopulation StatisticsPropertyPublicationsReproducibilityResolutionResourcesRunningSoftware ToolsStructural ModelsTrainingUniversitiesVisionVisualVisualizationVisualization softwareWorkZaleplonbasedata exchangedata formatdata integrationdigitaldiverse dataexperimental studyfile formatflexibilitygraphical user interfaceinterestmodel buildingmodels and simulationmoviemultimodal datanetwork architecturenetwork modelsresponsescripting interfacesimulationtheoriestooluser-friendly
项目摘要
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
One of the major goals of the BRAIN Initiative is to distill complex, multi-modal data into predictive frameworks
via theory/modeling. As the planning document "BRAIN 2025: A Scientific Vision" urges, “theory and modeling
should be woven into successive stages of ongoing experiments, enabling bridges to be built from single cells
to connectivity, population dynamics, and behavior.” However, data-driven, bio-realistic modeling is not widely
practiced, in part because the field needs software supporting such complex modeling and standards for model
sharing and reproducibility.
The Allen Institute has developed two powerful tools addressing these needs. One is the Brain Modeling
ToolKit (BMTK) – a software suite for model building and simulation at multiple levels of resolution, from
networks of biophysically detailed neuronal models, to point-neuron networks, to population-statistics
approaches. The other one is the SONATA (Scalable Open Network Architecture TemplAte) data format,
which provides computationally efficient solutions for storing and exchanging data describing all stages of the
modeling workflow (e.g., structure of model networks, configuration of simulations, simulation outputs). These
tools were developed in coordination with many initiatives, such as NEURON, NEST, Neurodata Without
Borders, NeuroML, PyNN, NetPyNE, and the Human Brain Project. As a result, BMTK and SONATA enable
many applications and have generated substantial interest, with many users already employing these tools.
Most recently, BMTK and SONATA were instrumental in integrating diverse data from the Allen Institute and
from the literature into some of the most sophisticated and bio-realistic models of a brain region to date.
We propose to build a comprehensive user support and dissemination platform for BMTK and SONATA and
help integrate these tools into model building and simulation practices in the community. In addition, the Allen
Institute team joins forces with a University of Illinois team that developed a widely used molecular visualization
software VMD. By integrating this software with SONATA, we will leverage its powerful existing capabilities to
offer a free, highly efficient visualization tool for neuroscience modeling. Together, these tools will facilitate free
exchange and reproducibility of models and support sophisticated modeling work – especially in cases of
large-scale biologically realistic models relying on systematic integration of experimental data – for novice and
expert users alike. These contributions will advance the BRAIN Initiative’s priority areas of Theory and Data
Analysis and Integrated Approaches and will strongly facilitate FAIRness (Findability, Accessibility,
Interoperability, and Reuse of digital assets) in neuroscience modeling.
通过大脑建模工具包和奏鸣曲数据格式推进生物现实的建模
大脑倡议的主要目标之一是将复合物,多模式数据提炼为预测框架
通过理论/建模。正如规划文件“大脑2025:科学愿景”敦促“理论与建模”
应编织成正在进行的实验的成功阶段,使桥梁能够从单个单元
对于连通性,人口动态和行为。
练习,部分是因为该领域需要支持这种复杂建模和模型标准的软件
共享和可重复性。
艾伦研究所(Allen Institute)开发了两个有力的工具来满足这些需求。一个是大脑建模
Toolkit(BMTK) - 以多个分辨率的模型构建和模拟的软件套件,从
生物物理详细的神经元模型的网络,点神经网络,覆盖人口统计数据
方法。另一个是奏鸣曲(可扩展的开放网络体系结构模板)数据格式,
它提供了用于存储和交换数据描述所有阶段的数据的计算有效解决方案
建模工作流程(例如,模型网络的结构,模拟的配置,模拟输出)。这些
工具是与许多计划协调开发的,例如神经元,巢,神经舞
边界,Neuroml,Pynn,Netpyne和人类脑项目。结果,BMTK和Sonata启用
许多应用程序并引起了重大兴趣,许多用户已经使用了这些工具。
最近,BMTK和Sonata在整合Allen Institute和
从文献到迄今为止大脑区域的一些最复杂,最现实的模型。
我们建议为BMTK和Sonata和
帮助将这些工具集成到社区中的模型构建和仿真实践中。此外,艾伦
Institute团队与伊利诺伊大学的团队联手,该团队开发了广泛使用的分子可视化
软件VMD。通过将此软件与奏鸣曲集成,我们将利用其强大的现有功能
为神经科学建模提供免费,高效的可视化工具。这些工具在一起将有助于自由
模型的交换和可重复性以及支持复杂的建模工作 - 尤其是在
大规模的生物学现实模型依赖于实验数据的系统整合 - 用于新颖和
专家用户都一样。这些贡献将推动大脑倡议的优先领域的理论和数据领域
分析和综合方法,并将强烈支持公平性(可访问性,可访问性,
神经科学建模中的互操作性和数字资产的重用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANTON ARKHIPOV其他文献
ANTON ARKHIPOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANTON ARKHIPOV', 18)}}的其他基金
Bridging Function, Connectivity, and Transcriptomics of Mouse Cortical Neurons
小鼠皮质神经元的桥接功能、连接性和转录组学
- 批准号:
10688081 - 财政年份:2022
- 资助金额:
$ 66.24万 - 项目类别:
Advancing Bio-Realistic Modeling via the Brain Modeling ToolKit and SONATA Data Format
通过大脑建模工具包和 SONATA 数据格式推进生物真实建模
- 批准号:
10477439 - 财政年份:2021
- 资助金额:
$ 66.24万 - 项目类别:
Cell Type and Circuit Mechanisms of Non-Invasive Brain Stimulation by Sensory Entrainment
感觉传导非侵入性脑刺激的细胞类型和电路机制
- 批准号:
10275301 - 财政年份:2021
- 资助金额:
$ 66.24万 - 项目类别:
Modeling the structure-function relation in a reconstructed cortical tissue
对重建皮质组织中的结构-功能关系进行建模
- 批准号:
10005712 - 财政年份:2020
- 资助金额:
$ 66.24万 - 项目类别:
ACCELERATION OF MOLECULAR MODELING APPLICATIONS WITH GRAPHICS PROCESSORS
使用图形处理器加速分子建模应用
- 批准号:
7723602 - 财政年份:2008
- 资助金额:
$ 66.24万 - 项目类别:
相似国自然基金
数据驱动的心血管疾病区域协同医疗服务研究
- 批准号:72301123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
- 批准号:72373114
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于迷走神经传导通路及其大脑皮层投射区域的调控探讨耳穴刺激治疗原发性失眠障碍疗效差异的脑功能机制及疗效预测研究
- 批准号:82304984
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非光滑区域上具有高对比系数椭圆方程及带剧烈振荡位势薛定谔型方程的均匀化定量理论
- 批准号:12371096
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
液状化した地盤の大変位推定ー盛土の危険区域推定手法の確立ー
液化地面大位移的估算 - 路堤危险区域估算方法的建立 -
- 批准号:
24K17347 - 财政年份:2024
- 资助金额:
$ 66.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 66.24万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 66.24万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 66.24万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 66.24万 - 项目类别:
Research Grant