RS Fellow - EPSRC grant (2016): Algebraic and topological approaches for genomic data in molecular biology

RS 研究员 - EPSRC 资助(2016):分子生物学中基因组数据的代数和拓扑方法

基本信息

  • 批准号:
    EP/R005125/1
  • 负责人:
  • 金额:
    $ 34.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Modern science generates data at an unprecedented rate, often including the measurement of genetic sequence information in time. One aim in molecular biology is to understand the processes that generate these data; this can be achieved by exploring different hypotheses that are translated into mathematical equations called models. The main outcome of my research will be a range of new methods to understand models in different scenarios with varying amounts of data. The focus of this proposal is genetic data.The molecular interactions at the genetic level often involve enzymes and therefore can be described as biochemical reactions (known and hypothesised). In DNA, a family of proteins called recombinases rearrange DNA sequences. The focus here will be on the class of site-specific recombinases, which only bind to the DNA at certain sites. Biochemically, the DNA is the substrate and the recombinase is the enzyme that catalyses the change. The mathematical models that study DNA either focus on the changes of the DNA at the nucleotide level or the global structure. Since DNA can be thought of as a string, when a recombinase acts on the DNA, it can also change the knotting of the DNA. The local level analysis mathematically employs algebra, while the global level analysis using topology, a field of mathematics that studies shapes. With recent work by a current PhD student, we have preliminary results that ribbon categories and new theory is required to merge between the local and global view of DNA. The aim of this project is to develop the mathematical theory and methods further, develop a database of known site-specific recombinases and resulting DNA knots (which exists for a different class of enzymes called topoisomerases) and then create prediction software. Final extensions are how to take into account uncertainty/noise in either the sequence level data or the global structure experimental image data. The second part of this project is to consider how a knot's configuration relates to its energy. Understanding the knot energies relates to unknots, which relates to a large unsolved problem in knot theory: Is there a polynomial-time algorithm to detect the unknot.The methods that I will develop require marrying ideas from pure mathematics (in particular from algebra and topology) with computing, statistics, and techniques from applied mathematics. To combine ideas and techniques from different fields that traditionally do not intersect is an exciting opportunity for interdisciplinary research, and the development of new mathematical ideas. I have experience conducting research projects at this intersection, and employing new methods to gain a new understanding of biological systems. The advances in mathematical methods and algorithms that result from this project, in combination with data-generating technologies, will enable to approach and understand real-world biological systems in new ways.
现代科学以前所未有的速度产生数据,通常包括及时测量基因序列信息。分子生物学的目标之一是了解生成这些数据的过程。这可以通过探索不同的假设来实现,这些假设被转化为称为模型的数学方程。我研究的主要成果将是一系列新方法来理解具有不同数据量的不同场景中的模型。该提案的重点是遗传数据。遗传水平上的分子相互作用通常涉及酶,因此可以被描述为生化反应(已知和假设的)。在 DNA 中,称为重组酶的蛋白质家族会重新排列 DNA 序列。这里的重点是位点特异性重组酶,它们只在某些位点结合 DNA。从生化角度来说,DNA 是底物,重组酶是催化变化的酶。研究DNA的数学模型要么关注DNA在核苷酸水平上的变化,要么关注整体结构。由于DNA可以被认为是一根绳子,当重组酶作用于DNA时,它也可以改变DNA的打结。局部层面的分析在数学上采用代数,而全局层面的分析则使用拓扑学(研究形状的数学领域)。通过一名在读博士生最近的工作,我们得到了初步结果,即需要将丝带类别和新理论融合到 DNA 的局部和全局视图中。该项目的目的是进一步发展数学理论和方法,开发已知位点特异性重组酶和所得 DNA 结(存在于称为拓扑异构酶的不同类别酶中)的数据库,然后创建预测软件。最终的扩展是如何考虑序列级数据或全局结构实验图像数据中的不确定性/噪声。该项目的第二部分是考虑结的配置与其能量的关系。理解结能量与无结有关,这涉及结理论中一个未解决的大问题:是否存在多项式时间算法来检测无结。我将开发的方法需要结合纯数学(特别是代数和拓扑)的思想)具有计算、统计和应用数学技术。将传统上不交叉的不同领域的思想和技术结合起来,对于跨学科研究和新数学思想的发展来说是一个令人兴奋的机会。我有在这个交叉点进行研究项目的经验,并采用新方法来获得对生物系统的新理解。该项目带来的数学方法和算法的进步,与数据生成技术相结合,将使我们能够以新的方式接近和理解现实世界的生物系统。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
$f$-distance of knotoids and protein structure
$f$-结节和蛋白质结构的距离
  • DOI:
    10.48550/arxiv.1909.08556
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barbensi A
  • 通讯作者:
    Barbensi A
The Reidemeister graph is a complete knot invariant
Reidemeister 图是一个完全结不变量
Barcodes distinguishing morphology of neuronal tauopathy
  • DOI:
    10.1103/physrevresearch.5.043006
  • 发表时间:
    2023-10-04
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Beers,David;Goniotaki,Despoina;Harrington,Heather A.
  • 通讯作者:
    Harrington,Heather A.
SUPPLEMENTARY INFORMATION FOR f -DISTANCE OF KNOTOIDS AND PROTEIN STRUCTURE from
结节的 f 距离和蛋白质结构的补充信息
  • DOI:
    10.6084/m9.figshare.13883910
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barbensi A
  • 通讯作者:
    Barbensi A
A Topological Selection of Folding Pathways from Native States of Knotted Proteins
  • DOI:
    10.3390/sym13091670
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Barbensi, Agnese;Yerolemou, Naya;Goundaroulis, Dimos
  • 通讯作者:
    Goundaroulis, Dimos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heather Harrington其他文献

Kuramoto Oscillators: algebraic and topological aspects
Kuramoto 振荡器:代数和拓扑方面
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather Harrington;Hal Schenck;Mike Stillman
  • 通讯作者:
    Mike Stillman
Algebraic identifiability of partial differential equation models
偏微分方程模型的代数可辨识性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Helen Byrne;Heather Harrington;A. Ovchinnikov;G. Pogudin;Hamid Rahkooy;Pedro Soto
  • 通讯作者:
    Pedro Soto
Consumer dance identity: the intersection between competition dance, televised dance shows and social media
消费者舞蹈身份:竞赛舞蹈、电视舞蹈节目和社交媒体之间的交集
  • DOI:
    10.1080/14647893.2020.1798394
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Heather Harrington
  • 通讯作者:
    Heather Harrington
“Dancer as collaborator, co-author, co-owner, co-creator: power relations between dancer and choreographer”
“舞者作为合作者、共同作者、共同所有者、共同创造者:舞者和编舞者之间的权力关系”
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Heather Harrington
  • 通讯作者:
    Heather Harrington

Heather Harrington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heather Harrington', 18)}}的其他基金

Computational topology and geometry for systems biology
系统生物学的计算拓扑和几何
  • 批准号:
    EP/Z531224/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.57万
  • 项目类别:
    Research Grant
Life and physical sciences interface: Topological underpinnings of data with application to biological sciences
生命与物理科学接口:数据的拓扑基础及其在生物科学中的应用
  • 批准号:
    BB/X004244/1
  • 财政年份:
    2022
  • 资助金额:
    $ 34.57万
  • 项目类别:
    Research Grant
Models of spatio-temporal reaction systems with applications to systems and synthetic biology
时空反应系统模型及其在系统和合成生物学中的应用
  • 批准号:
    EP/K041096/1
  • 财政年份:
    2014
  • 资助金额:
    $ 34.57万
  • 项目类别:
    Fellowship
Graduate Research Fellowship Program
研究生研究奖学金计划
  • 批准号:
    0739138
  • 财政年份:
    2007
  • 资助金额:
    $ 34.57万
  • 项目类别:
    Fellowship Award

相似国自然基金

中国数学会院士座谈会与科普活动
  • 批准号:
    12126511
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
数学院士专家大学中学系列科普活动
  • 批准号:
    12026425
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
院士专家系列数学科普讲座
  • 批准号:
    11926409
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    数学天元基金项目
共生视角下的院士科学合作网络结构与演化趋势研究:以中美两国科学院院士为例
  • 批准号:
    71603015
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
院士专家大学中学行系列数学科普活动
  • 批准号:
    11526003
  • 批准年份:
    2015
  • 资助金额:
    16.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

RS Fellow - EPSRC grant (2016): Investigating Measurement Incompatibility in Quantum Theory
RS 研究员 - EPSRC 资助 (2016):研究量子理论中的测量不兼容性
  • 批准号:
    EP/R00644X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 34.57万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2016): Spatial fragmentations
RS 研究员 - EPSRC 拨款 (2016):空间碎片
  • 批准号:
    EP/R005249/1
  • 财政年份:
    2017
  • 资助金额:
    $ 34.57万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2016): Realising the Automated Materials Synthesiser
RS 研究员 - EPSRC 资助 (2016):实现自动化材料合成器
  • 批准号:
    EP/R005931/1
  • 财政年份:
    2017
  • 资助金额:
    $ 34.57万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2014): Mitigating spin-current relaxation in spin-orbit coupled graphene: towards spin current routing in 2D carbon
RS 研究员 - EPSRC 资助 (2014):减轻自旋轨道耦合石墨烯中的自旋电流弛豫:实现二维碳中的自旋电流路由
  • 批准号:
    EP/N004817/1
  • 财政年份:
    2015
  • 资助金额:
    $ 34.57万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2014): Quantum computation as a programming language
RS 研究员 - EPSRC 资助 (2014):量子计算作为编程语言
  • 批准号:
    EP/N007387/1
  • 财政年份:
    2015
  • 资助金额:
    $ 34.57万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了