Novel X-ray methods for studying correlated quantum matter in the strong spin-orbit coupling limit
研究强自旋轨道耦合极限下相关量子物质的新 X 射线方法
基本信息
- 批准号:EP/N027671/1
- 负责人:
- 金额:$ 154.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Although it is one of the most prosaic properties of a material, the response to an applied electrical voltage can be one of its most profound. Initial insight into why some materials are electrical conductors while others are insulators came from the early application of quantum mechanics. In this view, electrons in "simple" materials are treated as independent, and solids are classified according to the number of electrons filling the quantum states: for an even number the states are filled, resulting in an insulator, whereas for an odd number the states are partly filled allowing the electrons to conduct. Although this rule of thumb works for many "simple" materials, including e.g. aluminum and silicon on which a large fraction of our current technologies are based, it fails spectacularly for others. Simple oxides of transition metals, for example, exist with partially filled electron states. Mott first proposed that it was only by including electron interactions, which in materials such as oxides can be dominant, that the metal-insulator transition can be understood. Hubbard later proposed a deceptively simple model with just two parameters, describing the tendency of electrons either to localize (insulating behaviour) or delocalize (metallic). For more than 50 years, the Mott-Hubbard paradigm has provided the abiding theoretical framework for rationalizing the electronic and magnetic properties of "complex" quantum solids defined as those that exhibit explicit collective quantum effects, such as high-temperature superconductivity. More recently, the relativistic coupling of an electron's intrinsic spin with its orbital motion - the spin-orbit interaction (SOI) - has come sharply into focus with the discovery that it can lead to qualitatively new types of electronic state. It has been shown that even for certain "simple" materials the SOI leads to surface metallic states on materials that in the bulk are insulating. These surface states are non-trivial, in that they are protected by symmetries - or topology - and therefore cannot be easily destroyed. The question then naturally arises as to the consequences of including relativistic effects in "complex" quantum materials in which the electrons interact strongly. The answer requires developing a new paradigm - beyond the Mott-Hubbard one - that treats interactions and the SOI on an equal footing. This proposal is to perform experiments that will be key to establishing this new paradigm. This new frontier has attracted considerable theoretical attention, and a plethora of predictions have been made for exotic electronic and magnetic states, some of which in the long run may lead to new technologies. Examples include novel types of insulators, metals, superconductors, quantum spin liquids, etc. However, history shows that although theory provides a useful guide, it cannot anticipate all possibilities, and many exciting discoveries will no doubt be made through experimentation. Revealing the nature of the electronic and magnetic correlations in complex "quantum matter" through experimentation is very challenging, requiring techniques with extremely high sensitivity and specificity. A major theme of this proposal is the development of novel X-ray techniques which will offer unprecedented insights into the atomic scale order and excitations in solids. The techniques will be developed at large-scale central facilities, both nationally and internationally, which have dedicated particle accelerators for producing ultra intense X-ray beams. The recent advent of X-ray laser sources represent the pinnacle of this technology which deliver 20 orders of magnitude higher intensity than conventional sources in femto-second pulses (i.e. the time taken for light to transit a molecule). These sources are transformational enabling novel non-equilibrium electronic and magnetic states to be created and their evolution to be studied in real-time.
尽管它是材料最普通的特性之一,但对施加电压的响应可能是其最深刻的特性之一。关于为什么有些材料是电导体而另一些材料是绝缘体的最初见解来自于量子力学的早期应用。在这种观点中,“简单”材料中的电子被视为独立的,并且固体根据填充量子态的电子数量进行分类:对于偶数,状态被填充,形成绝缘体,而对于奇数,则填充状态形成绝缘体。状态被部分填充,允许电子传导。尽管这个经验法则适用于许多“简单”材料,包括例如我们当前的技术很大一部分都是基于铝和硅,但对其其他技术来说却非常失败。例如,过渡金属的简单氧化物以部分填充的电子态存在。莫特首先提出,只有通过包括电子相互作用(在氧化物等材料中电子相互作用可能占主导地位),才能理解金属-绝缘体转变。哈伯德后来提出了一个看似简单的模型,只有两个参数,描述电子局域化(绝缘行为)或离域化(金属)的趋势。 50多年来,莫特-哈伯德范式为合理化“复杂”量子固体的电子和磁性特性提供了持久的理论框架,“复杂”量子固体被定义为表现出明确的集体量子效应的固体,例如高温超导性。最近,电子本征自旋与其轨道运动的相对论耦合——自旋轨道相互作用(SOI)——已经成为人们关注的焦点,因为人们发现它可以产生新型的电子态。事实证明,即使对于某些“简单”材料,SOI 也会导致在整体绝缘的材料上产生表面金属态。这些表面态非常重要,因为它们受到对称性或拓扑的保护,因此不容易被破坏。那么自然会出现一个问题,即在电子强烈相互作用的“复杂”量子材料中包含相对论效应会产生什么后果。答案需要开发一种新的范式——超越莫特-哈伯德范式——平等对待交互和 SOI。该提案旨在进行对于建立这一新范式至关重要的实验。这一新领域引起了相当多的理论关注,人们对奇异的电子和磁态做出了大量的预测,其中一些从长远来看可能会带来新技术。例子包括新型绝缘体、金属、超导体、量子自旋液体等。然而,历史表明,尽管理论提供了有用的指导,但它无法预见所有可能性,许多令人兴奋的发现无疑将通过实验获得。通过实验揭示复杂“量子物质”中电子和磁相关性的本质非常具有挑战性,需要具有极高灵敏度和特异性的技术。该提案的一个主要主题是开发新型 X 射线技术,该技术将为固体中的原子级有序和激发提供前所未有的见解。这些技术将在国内和国际的大型中心设施中开发,这些设施拥有用于产生超强 X 射线束的专用粒子加速器。最近出现的 X 射线激光源代表了该技术的顶峰,其飞秒脉冲(即光穿过分子所需的时间)比传统源高 20 个数量级。这些来源具有变革性,能够创建新颖的非平衡电子和磁态,并实时研究它们的演化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probing Electron-Phonon Interactions Away from the Fermi Level with Resonant Inelastic X-Ray Scattering
利用共振非弹性 X 射线散射探测远离费米能级的电子-声子相互作用
- DOI:http://dx.10.1103/physrevx.11.041052
- 发表时间:2021
- 期刊:
- 影响因子:12.5
- 作者:Dashwood C
- 通讯作者:Dashwood C
Strongly gapped spin-wave excitation in the insulating phase of NaOsO 3
NaOsO 3 绝缘相中的强能隙自旋波激发
- DOI:http://dx.10.1103/physrevb.95.020413
- 发表时间:2017
- 期刊:
- 影响因子:3.7
- 作者:Calder S
- 通讯作者:Calder S
Unveiling charge density wave quantum phase transitions by x-ray diffraction
通过 X 射线衍射揭示电荷密度波量子相变
- DOI:http://dx.10.1103/physrevb.101.195135
- 发表时间:2020
- 期刊:
- 影响因子:3.7
- 作者:Carneiro F
- 通讯作者:Carneiro F
Nuclear resonant scattering from 193Ir as a probe of the electronic and magnetic properties of iridates
193Ir 的核共振散射作为虹彩电子和磁性的探针
- DOI:http://dx.10.48550/arxiv.1804.06708
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Alexeev P
- 通讯作者:Alexeev P
Unveiling charge density wave quantum phase transitions by x-ray diffraction
通过 X 射线衍射揭示电荷密度波量子相变
- DOI:http://dx.10.48550/arxiv.1912.05669
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Carneiro F
- 通讯作者:Carneiro F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Desmond McMorrow其他文献
Desmond McMorrow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Desmond McMorrow', 18)}}的其他基金
New correlated electronic states arising from strong spin-orbit coupling
强自旋轨道耦合产生的新相关电子态
- 批准号:
EP/N034694/1 - 财政年份:2016
- 资助金额:
$ 154.3万 - 项目类别:
Research Grant
Emergence of novel electronic states in 5d transition metal oxides
5d 过渡金属氧化物中新电子态的出现
- 批准号:
EP/J016713/1 - 财政年份:2012
- 资助金额:
$ 154.3万 - 项目类别:
Research Grant
Visualisation and quantitative analysis of massive neutron scattering data volumes
海量中子散射数据体的可视化和定量分析
- 批准号:
ST/H001557/1 - 财政年份:2010
- 资助金额:
$ 154.3万 - 项目类别:
Research Grant
Quantum fluctuations and criticality in model magnets
模型磁体中的量子涨落和临界性
- 批准号:
EP/F032293/1 - 财政年份:2008
- 资助金额:
$ 154.3万 - 项目类别:
Research Grant
New Routes to Optimised Multiferroics
优化多铁性的新途径
- 批准号:
EP/D054176/1 - 财政年份:2006
- 资助金额:
$ 154.3万 - 项目类别:
Research Grant
相似国自然基金
三维黏弹性TTI介质中地震射线追踪及走时成像方法研究
- 批准号:42304060
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微、纳米X射线CT协同的橡胶改性沥青储存稳定性表征方法及演变机理
- 批准号:52378447
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
面向航发叶片残芯影像表征的X射线多谱CT成像方法研究
- 批准号:62301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
聚丁烯-1在溶剂中快速相变过程的超快X射线衍射表征方法及其相变机理的研究
- 批准号:52373027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
X射线发光测量学与生物分析成像新方法研究
- 批准号:22334004
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 154.3万 - 项目类别:
Advancing Systematic Delivery of Oncolytic Adenovirus for Pancreatic Cancer
推进溶瘤腺病毒治疗胰腺癌的系统递送
- 批准号:
10734709 - 财政年份:2023
- 资助金额:
$ 154.3万 - 项目类别:
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 154.3万 - 项目类别:
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
- 批准号:
10884028 - 财政年份:2023
- 资助金额:
$ 154.3万 - 项目类别:
The X-VISUAL (X-ray Visualized Indicator for Screw-strain Under Applied Load)
X-VISUAL(施加负载下螺钉应变的 X 射线可视化指示器)
- 批准号:
10822470 - 财政年份:2023
- 资助金额:
$ 154.3万 - 项目类别: