Ultrax2020: Ultrasound Technology for Optimising the Treatment of Speech Disorders.
Ultrax2020:优化言语障碍治疗的超声技术。
基本信息
- 批准号:EP/P02338X/1
- 负责人:
- 金额:$ 122.92万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Speech Sound Disorders (SSDs) are the most common communication impairment in childhood; 16.5% of eight year olds have SSDs ranging from problems with only one of two speech sounds to speech that even family members struggle to understand. SSDs can occur in isolation or be part of disability such as Down syndrome, autism or cleft palate. In 2015, the James Lind Alliance identified improving communication skills and investigating the direction of interventions as the top two research priorities for children with disabilities. Our programme of research aims to fulfil this need by developing technology which will aid the assessment, diagnosis and treatment of SSDs. Currently in Speech and Language Therapy, technological support is sparse. Through our previous work in the Ultrax project we showed that by using ultrasound to image the tongue in real-time, children can rapidly learn to produce speech sounds which have previously seemed impossible for them. Through this project, we developed technology that enhances the ultrasound image of the tongue, making it clearer and easier to interpret. Ultrax2020 aims to take this work forward, by further developing the ultrasound tongue tracker into a tool for diagnosing specific types of SSDs and evaluating how easy it is to use ultrasound in NHS clinics. The ultimate goal of our research is that Ultrax2020 will be used by Speech and Language Therapists (SLTs) to assess and diagnose SSDs automatically, leading to quicker, more targeted intervention.Normally speech assessment involves listening to the child and writing down what they say. This approach can miss important subtleties in the way children speak. For example, a child may try to say "key" and it may be heard as "tea". This leads the SLT to believe the child cannot tell the difference between t and k and select a therapy designed to tackle this. However, ultrasound allows us to view and measure the tongue, revealing that in many cases children are producing imperceptible errors. In the above example, an ultrasound scanner placed under the chin shows that the child produces both t and k simultaneously. Identification of these errors means that the SLT must choose a different therapy approach. However, ultrasound analysis is a time consuming task which can only be carried out by a speech scientist with specialist training. It is a key output of Ultrax2020 to develop a method for analysing ultrasound automatically, therefore creating a speech assessment tool which is both more objective and quicker to use. Building on the work of the Ultrax project, where we developed a method of tracking ultrasound images of the tongue, Ultrax2020 aims to develop a method of classifying tongue shapes to form the basis of an automatic assessment and a way of measuring progress objectively. We are fortunate to already have a large database of ultrasound images of tongue movements from adults and primary school children, including those with speech disorders, on which to base the model of tongue shape classification and to test its performance. At the same time, we will evaluate the technology we develop as part of Ultrax2020 by partnering with NHS SLTs to collect a very large database of ultrasound from children with a wide variety of SSDs. In three different NHS clinics, SLTs will record ultrasound from over 100 children before and after ultrasound-based speech therapy. This data will be sent to a university speech scientist for analysis and feedback to clinicians recommending intervention approaches. Towards the end of the project, we will be able to compare this gold-standard hand-labelled analysis with the automatic classification developed during the project. At the conclusion of our research project we will have developed and validated a new ultrasound assessment and therapy tool (Ultrax2020) for Speech and Language Therapists to use in the diagnosis and treatment of SSDs.
语音障碍(SSD)是儿童时期最常见的沟通障碍。八岁的孩子中有16.5%的SSD涉及从两个演讲中的问题之一到甚至家人也很难理解的言论的问题。 SSD可以孤立地发生,也可以成为残疾的一部分,例如唐氏综合症,自闭症或left裂。 2015年,詹姆斯·林德联盟(James Lind Alliance)确定了提高沟通技巧并调查干预措施的方向,这是残疾儿童的前两个研究优先事项。我们的研究计划旨在通过开发将有助于评估,诊断和治疗SSD的技术来满足这一需求。目前,在语音和语言疗法中,技术支持很少。通过我们以前在Ultrax项目中的工作,我们表明,通过使用超声来实时对舌头进行图像,孩子们可以迅速学习产生以前似乎对他们似乎不可能的语音。通过这个项目,我们开发了增强舌头超声图像的技术,使其更清晰,更容易解释。 Ultrax2020的目的是通过将超声舌跟踪器进一步开发为诊断特定类型的SSD并评估NHS诊所使用超声波的容易性,以实现这一工作。我们研究的最终目的是,言语和语言治疗师(SLT)将使用Ultrax2020自动评估和诊断SSD,从而导致更快,更有针对性的干预措施。通常,语音评估涉及聆听孩子并写下他们所说的话。这种方法可能会错过儿童讲话方式的重要微妙之处。例如,孩子可能会试图说“钥匙”,并且可以听到“茶”。这使SLT相信孩子无法分辨T和K之间的差异,并选择旨在解决此问题的疗法。但是,超声波使我们能够查看和测量舌头,从而表明在许多情况下,儿童正在产生不可察觉的错误。在上面的示例中,放置在下巴下的超声扫描仪表明孩子同时产生T和K。这些错误的识别意味着SLT必须选择其他治疗方法。但是,超声分析是一项耗时的任务,只能由科学家进行专业培训。它是Ultrax2020的关键输出,可以开发一种自动分析超声波的方法,因此创建语音评估工具,既客观又更快地使用。 Ultrax2020在Ultrax Project的工作基础上,我们开发了一种跟踪舌头超声图像的方法,旨在开发一种对舌头形状进行分类的方法,以形成自动评估的基础,并客观地衡量进步的方法。我们很幸运,已经拥有大型数据库,这些数据库是成年人和小学生(包括言语障碍的孩子)的舌头运动的超声图像,以基于舌头形状分类的模型并测试其表现。同时,我们将通过与NHS SLT合作收集具有各种SSD的儿童的超声数据库来评估我们作为Ultrax2020的一部分开发的技术。在三个不同的NHS诊所中,SLT将在基于超声的语音治疗前后记录100多名儿童的超声检查。这些数据将发送给大学演讲科学家,以分析和反馈给临床医生建议干预方法。在项目结束时,我们将能够将这种金色标准的手持分析与项目期间开发的自动分类进行比较。在我们的研究项目结束时,我们将开发并验证了一种新的超声评估和治疗工具(Ultrax2020),以用于诊断和治疗SSD的语音和语言治疗师。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An initial framework for use of ultrasound by speech and language therapists in the UK: Scope of practice, education and governance.
- DOI:10.1177/1742271x221122562
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Automatic audiovisual synchronisation for ultrasound tongue imaging
- DOI:10.1016/j.specom.2021.05.008
- 发表时间:2021-06-12
- 期刊:
- 影响因子:3.2
- 作者:Eshky, Aciel;Cleland, Joanne;Renals, Steve
- 通讯作者:Renals, Steve
An Ultrasound Investigation of Tongue Dorsum Raising in Children with Cleft Palate +/- Cleft Lip.
腭裂/唇裂儿童舌背抬高的超声检查。
- DOI:10.1177/10556656231158965
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Cleland J
- 通讯作者:Cleland J
Tongue Shape Complexity in Children with and without Speech Sound Disorders
有和没有言语障碍的儿童的舌头形状复杂性
- DOI:10.31219/osf.io/xg9kz
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dokovova M
- 通讯作者:Dokovova M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Renals其他文献
Are extractive text summarisation techniques portable to broadcast news?
提取文本摘要技术是否可以移植到广播新闻中?
- DOI:
10.1109/asru.2003.1318489 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Heidi Christensen;Y. Gotoh;B. Kolluru;Steve Renals - 通讯作者:
Steve Renals
HMM音声合成における変分ベイズ法に基づく線形回帰
HMM语音合成中基于变分贝叶斯方法的线性回归
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
橋本佳;山岸順一;Peter Bell;Simon King;Steve Renals;徳田恵一 - 通讯作者:
徳田恵一
音声の障害患者のための音声合成枝術 : Voice banking and reconstruction
适用于语音障碍患者的语音合成技术:语音库和重建
- DOI:
10.20697/jasj.67.12_587 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
山岸 順一;Christophe Veaux;S. King;Steve Renals - 通讯作者:
Steve Renals
EURASIP Journal on Applied Signal Processing 2003:2, 128–139 c ○ 2003 Hindawi Publishing Corporation A Statistical Approach to Automatic Speech Summarization
EURASIP 应用信号处理杂志 2003:2, 128–139 c ○ 2003 Hindawi Publishing Corporation 自动语音摘要的统计方法
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
B. Kolluru;Heidi Christensen;Y. Gotoh;Steve Renals - 通讯作者:
Steve Renals
A robust speaker-adaptive HMM-based text-to-speech synthesis
基于 HMM 的稳健的说话人自适应文本到语音合成
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Junichi Yamagishi;Takashi Nose;Heiga Zen;Zhenhua Ling;Tomoki Toda;Keiichi Tokuda;Simon King;Steve Renals - 通讯作者:
Steve Renals
Steve Renals的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Renals', 18)}}的其他基金
Ultrax: Real-time tongue tracking for speech therapy using ultrasound
Ultrax:使用超声波进行言语治疗的实时舌头追踪
- 批准号:
EP/I027696/1 - 财政年份:2011
- 资助金额:
$ 122.92万 - 项目类别:
Research Grant
MultiMemoHome: Multimodal Reminders Within the Home
MultiMemoHome:家庭内的多模式提醒
- 批准号:
EP/G060614/1 - 财政年份:2009
- 资助金额:
$ 122.92万 - 项目类别:
Research Grant
Data-driven articulatory modelling: foundations for a new generation of speech synthesis
数据驱动的发音建模:新一代语音合成的基础
- 批准号:
EP/E027741/1 - 财政年份:2006
- 资助金额:
$ 122.92万 - 项目类别:
Research Grant
相似国自然基金
基于超声波末端执行器的精密装配技术研究
- 批准号:62303321
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向非接触式人机交互的超声波手势识别关键技术研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向非接触式人机交互的超声波手势识别关键技术研究
- 批准号:62102139
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于分布式设备的超声波测距关键技术及应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于分布式设备的超声波测距关键技术及应用研究
- 批准号:62102006
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 122.92万 - 项目类别:
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 122.92万 - 项目类别:
Preclinical testing of early life anti-myostatin therapy for osteogenesis imperfecta
早期抗肌生长抑制素治疗成骨不全症的临床前测试
- 批准号:
10840238 - 财政年份:2023
- 资助金额:
$ 122.92万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 122.92万 - 项目类别: