FUNDAMENTAL STUDIES ON ORGANIC RANKINE CYCLE EXPANDERS (NextORC)

有机兰金循环扩张剂的基础研究 (NextORC)

基本信息

  • 批准号:
    EP/P009131/1
  • 负责人:
  • 金额:
    $ 84.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Commercial steam power plants pressurise and heat water to produce steam which is then expanded to produce electricity. However, using an organic fluid permits low temperature heat sources, typically between 80 and 350 degrees Celsius, to be converted into mechanical power more economically than steam. Organic Rankine Cycles (ORC) therefore have a great potential to contribute to the UK's mix of low carbon technologies with promising applications such as combined heat and power, concentrated solar power and waste heat recovery from reciprocating engines and other industrial processes with waste heat streams. However, despite successful commercialisation of ORCs for industrial scale applications, more development is required at the commercial and domestic scales before its potential can be realised. More specifically, at these small-scales, the challenge lies in the design of systems that are efficient but are also low cost. One approach to achieving this is to develop systems that operate efficiently over a range of different conditions. This will enable the high-volume, low-cost production of ORC systems, enabling significant improvements in the economy-of-scale. Furthermore, at this scale, different expander technologies, such as turbo and screw expanders, and system architectures can be considered. However, it is not clear which expander technology or system architecture is the optimal choice to achieve the desired improvements in the economy-of-scale. To answer this question it is important to improve the understanding of how different ORC expanders perform across a wide range of operating conditions, and to investigate how these systems respond to changes in the working fluid.The focus of this proposal is to conduct original research to improve the fundamental understanding on the performance of two different types of ORC expander, namely turbo and screw expanders. Computational and experimental methods will be used to investigate the performance of these expanders across a wide range of operating conditions and with a variety of organic fluids. These studies must account for the complexities of using organic fluids that exhibit complex fluid behaviour not observed in conventional fluids such as air and steam, in addition to considering the high speed flows, and two-phase conditions that are expected in turbo and screw expanders respectively. Ultimately, the results from these studies will improve the existing scientific understanding, and will facilitate the development of new performance prediction methods for these expanders. Understanding these aspects will not only lead to improved performance prediction, but could also lead to improved component design in the future. Within this project the new prediction methods will be used to investigate and compare the performance of different expanders within different ORC system architectures. The results from these comparisons will enable the identification of the optimal systems that can operate across a wide range of operating conditions, and therefore best facilitate improvements in the economy-of-scale of small-scale ORC systems.The primary outcomes of this research will be improved fundamental understanding of the performance of ORC expanders and validated performance models for turbine and screw expanders. Furthermore, recommendations will be made on the most appropriate system configurations that offer improvements in the economy-of-scale, thus enhancing the future commercialisation of small-scale ORC technology. Therefore this project has the potential to stimulate investment and create new jobs within the low carbon energy market, whilst positively contributing to the UK's existing research portfolio in turbomachinery and screw expanders.
商业蒸汽发电厂对水进行加压和加热以产生蒸汽,然后蒸汽膨胀以产生电力。然而,使用有机流体可以将低温热源(通常在 80 至 350 摄氏度之间)比蒸汽更经济地转化为机械能。因此,有机朗肯循环(ORC)具有巨大的潜力,可以为英国的低碳技术组合做出贡献,这些技术具有广阔的应用前景,例如热电联产、聚光太阳能、往复式发动机的废热回收和其他具有废热流的工业过程。然而,尽管ORC在工业规模应用方面已成功商业化,但在发挥其潜力之前,还需要在商业和家庭规模上进行更多开发。更具体地说,在这些小规模上,挑战在于设计高效且低成本的系统。实现这一目标的一种方法是开发能够在一系列不同条件下高效运行的系统。这将使 ORC 系统能够大批量、低成本生产,从而显着提高规模经济。此外,在这种规模下,可以考虑不同的膨胀机技术,例如涡轮膨胀机和螺杆膨胀机以及系统架构。然而,尚不清楚哪种扩展器技术或系统架构是实现规模经济所需改进的最佳选择。为了回答这个问题,重要的是要加深对不同 ORC 膨胀机在各种操作条件下如何运行的理解,并研究这些系统如何响应工作流体的变化。本提案的重点是进行原创研究提高对两种不同类型 ORC 膨胀机(即涡轮膨胀机和螺杆膨胀机)性能的基本了解。将使用计算和实验方法来研究这些膨胀机在各种操作条件和各种有机流体中的性能。这些研究必须考虑使用有机流体的复杂性,这些有机流体表现出在空气和蒸汽等传统流体中未观察到的复杂流体行为,此外还分别考虑涡轮膨胀机和螺杆膨胀机中预期的高速流动和两相条件。最终,这些研究的结果将提高现有的科学认识,并将促进这些膨胀机新性能预测方法的开发。了解这些方面不仅可以改进性能预测,还可以改进未来的组件设计。在该项目中,新的预测方法将用于研究和比较不同 ORC 系统架构中不同扩展器的性能。这些比较的结果将能够确定可以在各种操作条件下运行的最佳系统,从而最好地促进小型 ORC 系统的规模经济的改进。这项研究的主要成果将是提高对 ORC 膨胀机性能的基本了解,并验证涡轮机和螺杆膨胀机的性能模型。此外,还将就最合适的系统配置提出建议,以提高规模经济,从而促进小型 ORC 技术的未来商业化。因此,该项目有潜力刺激低碳能源市场的投资并创造新的就业机会,同时为英国现有的涡轮机械和螺杆膨胀机研究组合做出积极贡献。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluid selection for small-scale rankine cycle plants: Can you draw some lines in the sand?
小型朗肯循环装置的流体选择:你能在沙子上画一些线吗?
Numerical Modelling and Experimental Validation of Twin-Screw Expanders
  • DOI:
    10.3390/en13184700
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    K. Vimalakanthan;M. Read;A. Kovacevic
  • 通讯作者:
    K. Vimalakanthan;M. Read;A. Kovacevic
A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles
  • DOI:
    10.3390/en11040800
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. White;A. Sayma
  • 通讯作者:
    M. White;A. Sayma
Making the case for cascaded organic Rankine cycles for waste-heat recovery
  • DOI:
    10.1016/j.energy.2020.118912
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    9
  • 作者:
    M. White;M. Read;A. Sayma
  • 通讯作者:
    M. White;M. Read;A. Sayma
A new method to identify the optimal temperature of latent-heat thermal-energy storage systems for power generation from waste heat
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abdulnaser Sayma其他文献

Thermodynamic modelling and real-time control strategies of solar micro gas turbine system with thermochemical energy storage
热化学储能太阳能微型燃气轮机系统的热力学建模与实时控制策略
  • DOI:
    10.1016/j.jclepro.2021.127010
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Jiamin Yang;Gang Xiao;Mohsen Ghavami;Jafar Al-Zaili;Tianfeng Yang;Abdulnaser Sayma;Dong Ni
  • 通讯作者:
    Dong Ni

Abdulnaser Sayma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abdulnaser Sayma', 18)}}的其他基金

Innovation in Supercritical CO2 Power generation systems
超临界二氧化碳发电系统的创新
  • 批准号:
    EP/X04131X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 84.18万
  • 项目类别:
    Research Grant
Industrial waste heat recovery using supercritical carbon dioxide cycles (SCOTWOHR)
使用超临界二氧化碳循环回收工业废热 (SCOTWOHR)
  • 批准号:
    EP/V001752/1
  • 财政年份:
    2021
  • 资助金额:
    $ 84.18万
  • 项目类别:
    Research Grant

相似国自然基金

水作为有机反应绿色催化剂和绿色溶剂的若干基本问题研究
  • 批准号:
    21572107
  • 批准年份:
    2015
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
基于分子内共振能量转移的宽谱带吸收有机三重态光敏剂的制备和若干基本光物理问题的研究
  • 批准号:
    21473020
  • 批准年份:
    2014
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
柔性有机薄膜太阳能电池的电极、界面及其结构的基本问题研究
  • 批准号:
    91233117
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
气相过渡金属离子与有机分子若干基本反应的理论研究
  • 批准号:
    21003158
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
自旋极化电子注入有机材料的基本性质研究
  • 批准号:
    10474056
  • 批准年份:
    2004
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Fundamental Studies of Ni-Catalyzed Organic Reactions
镍催化有机反应的基础研究
  • 批准号:
    10552202
  • 财政年份:
    2023
  • 资助金额:
    $ 84.18万
  • 项目类别:
How Damaged DNA Forms, and its Subsequent Chemistry: Fundamental Studies and Applications
受损 DNA 是如何形成的及其后续化学:基础研究和应用
  • 批准号:
    10161792
  • 财政年份:
    2019
  • 资助金额:
    $ 84.18万
  • 项目类别:
How Damaged DNA Forms, and its Subsequent Chemistry: Fundamental Studies and Applications
受损 DNA 是如何形成的及其后续化学:基础研究和应用
  • 批准号:
    10413873
  • 财政年份:
    2019
  • 资助金额:
    $ 84.18万
  • 项目类别:
Fundamental Studies of Excitons and Charge-Carriers in Organic Materials Relevant to Organic Electronics
有机电子相关有机材料中激子和载流子的基础研究
  • 批准号:
    17H06791
  • 财政年份:
    2017
  • 资助金额:
    $ 84.18万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Cannabinoid Function in the CNS: From Molecules to Disease Mechanisms
大麻素在中枢神经系统中的功能:从分子到疾病机制
  • 批准号:
    8906982
  • 财政年份:
    2015
  • 资助金额:
    $ 84.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了