Ultra-Stable High-Performance Nanolasers

超稳定高性能纳米激光器

基本信息

  • 批准号:
    EP/P006027/1
  • 负责人:
  • 金额:
    $ 49.69万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

2015 was designated by the United Nations as the 'International Year of Light and Light-Based Technologies'. World-wide activities during the year highlighted the importance of photonics in industry, health care and education. Those activities - strongly supported by the UK - has led strong credence to the claim that photonics is the key technology of the 21st century. During the 20th century the UK delivered key advances in photonics technology including the development of low-loss optical fibres, pioneering work in semiconductor laser development and the invention of optical fibre amplifiers. That inventiveness is the foundation of optical fibre communications whose maturity has enabled year-on-year growth in data traffic including web-based products and services. The internet already consumes in excess of 5% of the world's electricity and is projected to consume 10% of that capacity very soon. As it is expected that growth in internet traffic will continue it is apparent that the demands placed on electricity sources could become unsustainable. Moreover, due to delays in decisions on the provision of new electricity generation capacity as well as vacillations in policy in respect of renewable energy sources, the UK is particularly vulnerable to excessive demands on electricity: the safety margin for generation has in the past few years declined from 15% in 2011/12 to a predicted 5% in 2015/16. The UK therefore has a particular need to advance technologies which will relieve demands on electricity usage. Photonics is such a technology and, specifically, the adoption of optical switching within compact photonic integrated circuits (PICs) will effect a dramatic reduction in electricity consumption: 40% of the internet electricity consumption is due to core switching operations. One of the key requirements to achieving PICs is to miniaturize photonic components down to the nanometer scale, for instance, nanolasers. In this case, the bottleneck that must be overcome is due to the diffraction limit of light, namely, ~l/2n limiting the minimal dimensions of a laser cavity, where l and n are the free space wavelength and refractive index, respectively. It is also crucial to minimise energy consumption while using optical sources such as lasers for such compact PICs, and thus a laser with a very low threshold is essential. The use of surface plasmon polarition (SPP) modes excited at the metal dielectric interface offers a means for device size reduction down to the sub-wavelength range. The project will combine the expertise in simulation, design and testing of advanced nanolasers at Bangor, and the established epitaxial growth and advanced nanofabrication of GaN based optoelectronics at Sheffield to develop the first GaN based electrically-pumped single nanolasers. Building on analysis of stand-alone single nanolasers, it will be demonstrated that optimized nanolasers can be configured such that they remain immune to instabilities when subject to external optical influences. Such stability makes nanolasers ideal candidates for incorporation in complex photonic integrated circuits. This project will contribute to developing future photonic technologies which underpins the operation of the internet, Smart Phone and Tablet usage, satellite communications/GPS, Direct Broadcast TV, energy efficient solid state lighting, efficient solar power generation, consumer electronics, high capacity communications networks and data storage, advanced healthcare and ground-breaking biotechnology.
2015年被联合国指定为“基于光和光基技术的国际年”。一年中的全球活动强调了光子学在工业,医疗保健和教育中的重要性。这些活动 - 在英国得到强有力的支持 - 使人们相信光子学是21世纪的关键技术。在20世纪,英国在光子技术方面取得了关键的进步,包括开发低损坏光纤,半导体激光开发中的开创性工作以及光纤放大器的发明。这种创造力是光纤通信的基础,其成熟度已使数据流量(包括基于Web的产品和服务)同比增长。互联网已经消耗超过世界电力的5%,预计将很快消耗掉该容量的10%。正如预期的那样,互联网流量的增长将继续下去,显然,对电源的需求可能会变得不可持续。此外,由于对提供新的发电能力的决策延迟以及有关可再生能源的政策的宣传,英国尤其容易受到过度需求的电力:过去几年的安全利润率从2011/12年度的15%下降到2015/16年度的5%。因此,英国特别需要推进技术,以减轻对用电的需求。 Photonics是一种技术,具体来说,紧凑的光子集成电路(PIC)内的光学切换将影响电力消耗的大幅降低:40%的互联网电力消耗是由于核心切换操作。实现图片的关键要求之一是将光子成分微型化至纳米尺度,例如纳米层。在这种情况下,必须克服的瓶颈是由于光的衍射极限,即〜l/2n限制了激光腔的最小尺寸,其中L和N分别是自由空间波长和折射率。在使用光学源(例如激光器)进行这种紧凑的图片的同时最大程度地减少能源消耗也至关重要,因此至关重要的是具有非常低阈值的激光器是必不可少的。在金属介电界面上激发的表面等离子体极化(SPP)模式的使用提供了将设备尺寸降低到次波长范围的手段。该项目将结合班戈(Bangor)高级纳米层的模拟,设计和测试的专业知识,以及在谢菲尔德(Sheffield)基于GAN的基于GAN的Opeleyctronics的既定外延生长和先进的纳米纳米制作,以开发第一个基于GAN的电气泵基的单纳米酶。在分析独立单一纳米剂的基础上,将证明,可以对优化的纳米层进行配置,以使它们在受外部光学影响的情况下保持不受稳定性的影响。这种稳定性使纳米射击器理想地掺入复杂的光子整合电路中。该项目将有助于开发未来的光子技术,这些技术是互联网,智能手机和平板电脑使用,卫星通信/GPS,直接广播电视,能源有效的固态照明,有效的太阳能发电,消费电子电子,高容量通信网络和数据存储,高级医疗保健和开创性的生物技术。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
All-Optical Comparator With a Step-Like Transfer Function
具有阶跃传递函数的全光比较器
  • DOI:
    10.1109/jlt.2017.2766673
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pu Li;Luxiao Sang;Dongliang Zhao;Yuanlong Fan;K Alan Shore;Yuncai Wang;Anbang Wang
  • 通讯作者:
    Anbang Wang
Numerical Investigation on Feedback Insensitivity in Semiconductor Nanolasers
Low Threshold Gain Visible Semiconductor Nanolasers
低阈值增益可见光半导体纳米激光器
  • DOI:
    10.1109/ipcon.2019.8908279
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Y
  • 通讯作者:
    Fan Y
Ultrashort pulse generation in a semiconductor laser with strong coherent optical feedback
  • DOI:
    10.1049/iet-opt.2018.5010
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Iet Optoelectronics;Yuanlong Fan;K. A. Shore;Yanhua Hong
  • 通讯作者:
    Iet Optoelectronics;Yuanlong Fan;K. A. Shore;Yanhua Hong
Design of Room Temperature Electrically Pumped Visible Semiconductor Nanolasers
  • DOI:
    10.1109/jqe.2018.2869332
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yuanlong Fan;K. Shore
  • 通讯作者:
    Yuanlong Fan;K. Shore
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Shore其他文献

Alan Shore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向安全稳定生产的风电智能预测预警机制研究
  • 批准号:
    62366039
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
BCLAF1通过YTHDF2调控RNA稳定性促进食管鳞癌代谢重编程的机制研究
  • 批准号:
    82372680
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
稳定共轭二并与三并莫比乌斯结构的精准构筑与性质研究
  • 批准号:
    22371243
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
利用油菜-菘蓝附加系解析板蓝根药用活性成分及遗传稳定的抗病毒油菜创制
  • 批准号:
    32372088
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高效稳定单结钙钛矿光伏器件的全光谱光子调控研究
  • 批准号:
    52332008
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目

相似海外基金

Ultra-stable, phase sensitive, snapshot OCT system enabled by 2-Photon additive manufacturing
通过 2 光子增材制造实现超稳定、相敏、快照 OCT 系统
  • 批准号:
    10607853
  • 财政年份:
    2023
  • 资助金额:
    $ 49.69万
  • 项目类别:
DEVELOPMENT OF CONCENTRATED, STABLE ULTRA FAST-ACTING INSULIN FORMULATION
浓缩、稳定的超速效胰岛素制剂的开发
  • 批准号:
    10161661
  • 财政年份:
    2018
  • 资助金额:
    $ 49.69万
  • 项目类别:
Novel ultra-stable enzymes and methods for proteomics
新型超稳定酶和蛋白质组学方法
  • 批准号:
    10010437
  • 财政年份:
    2018
  • 资助金额:
    $ 49.69万
  • 项目类别:
DEVELOPMENT OF CONCENTRATED, STABLE ULTRA FAST-ACTING INSULIN FORMULATION
浓缩、稳定的超速效胰岛素制剂的开发
  • 批准号:
    10188522
  • 财政年份:
    2018
  • 资助金额:
    $ 49.69万
  • 项目类别:
Ultra-Stable High-Performance Single Nanolasers
超稳定高性能单纳米激光器
  • 批准号:
    EP/P006361/1
  • 财政年份:
    2017
  • 资助金额:
    $ 49.69万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了