Beyond Blue: New Horizons in Nitrides (Platform Grant Renewal)

超越蓝色:氮化物的新视野(平台资助续订)

基本信息

  • 批准号:
    EP/M010589/1
  • 负责人:
  • 金额:
    $ 124.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Our research is based on gallium nitride and its alloys, an amazing family of materials which can emit light over a wide range of colours - from the infra-red (IR) to the ultra-violet (UV). Already these materials are widely used in light emitting devices that are part of our everyday lives, perhaps most commonly in blue light emitting diodes (LEDs) and laser diodes (LDs). The LDs are at the heart of the blu-ray HD-DVD player, whilst the blue LEDs are combined with phosphors that emit other colours of light to produce white light. Such white LEDs are now very common in bicycle lights, torches and back-lighting for displays on portable electronic devices from mobile phones to tablet computers.Cambridge and Manchester have been collaborating on materials for blue LEDs for over ten years. Our research has led to step changes in the understanding of the basic materials science and physics of the light emitting materials leading to improved LED efficiency. Also we have pioneered lower cost methods for the growth of the gallium nitride crystals used in LEDs which have been commercialised, and are currently being exploited by a UK company, Plessey, who are fabricating these devices at their UK factory in Plymouth. Whilst we aim to continue to improve both the performance and cost of our blue LED technology in collaboration with our industrial partners, enabling new applications, e.g. in health care systems, we are now looking beyond the blue LED to other applications of gallium nitride such as devices that will emit light in the green and UV parts of the spectrum. Currently nitride devices emitting in the green and UV have much lower efficiencies than blue LEDs, and this limitation prevents the full exploitation of the nitrides across the whole spectrum. Applying the successful Cambridge-Manchester approach of understanding the basic science underlying the materials' properties, and using this to drive device development, we aim to produce green LEDs for application in displays and in high quality white lighting for homes and offices. Perhaps even more significantly, UV LEDs could be a low-energy way to purify drinking water, which could save millions of lives in the developing worlds, and we are considering innovative approaches to the development of these devices. Looking beyond LEDs, we will carry out research on LDs and even single photon sources. These latter devices, which emit one -and only one - photon on demand, are an enabling technology for quantum cryptography and quantum computation. We are already world leaders in the design and fabrication of blue single photon sources. The horizons we wish to explore are not necessarily new colours but devices with astounding new capabilities, such as the emission of pairs of entangled photons. Entanglement - which Albert Einstein referred to as "spooky action at a distance" - is a peculiar phenomenon by which changes made to one of the entangled pair of particles affect the other, even if the two are many miles apart. Entanglement can be used to achieve totally secure transfer of information. Gallium nitride can also be used in electronic devices, and so another emerging research theme at Cambridge and Manchester is the development of nitride transistors which will reduce the energy wasted as heat in high power applications such as computer power supplies, motor drives or power inverters of photovoltaic systems.Overall, our research has the potential to provide clean water for millions, vastly reduce energy consumption and greenhouse gas emissions and to enable totally secure communications but there are many new applications on the horizon for GaN, and we hope that this platform grant will help us to keep the UK at the forefront of this outstanding developing technology.
我们的研究基于氮化镓及其合金,这是一个令人惊叹的材料系列,可以发出多种颜色的光 - 从红外线 (IR) 到紫外线 (UV)。这些材料已经广泛应用于我们日常生活中的发光器件,最常见的可能是蓝光发光二极管 (LED) 和激光二极管 (LD)。 LD 是蓝光 HD-DVD 播放器的核心,而蓝色 LED 与发射其他颜色光的荧光粉结合以产生白光。这种白色 LED 现在在自行车灯、手电筒以及从手机到平板电脑等便携式电子设备显示屏的背光中非常常见。剑桥和曼彻斯特在蓝色 LED 材料方面的合作已有十多年了。我们的研究使人们对基础材料科学和发光材料物理学的理解发生了重大变化,从而提高了 LED 效率。此外,我们还开创了用于 LED 的氮化镓晶体生长的低成本方法,这些方法已经商业化,目前正由一家英国公司 Plessey 开发,该公司正在其位于普利茅斯的英国工厂制造这些设备。我们的目标是与工业合作伙伴合作,继续提高蓝色 LED 技术的性能和成本,从而实现新的应用,例如:在医疗保健系统中,我们现在将目光从蓝色 LED 转向氮化镓的其他应用,例如可发射光谱中绿光和紫外光的设备。目前,发射绿光和紫外光的氮化物器件的效率比蓝光 LED 低得多,这种限制阻碍了氮化物在整个光谱范围内的充分利用。我们应用剑桥-曼彻斯特成功的方法来了解材料特性背后的基础科学,并以此来推动设备开发,我们的目标是生产用于显示器以及家庭和办公室高品质白光照明的绿色 LED。或许更重要的是,UV LED 可以成为净化饮用水的一种低能耗方式,从而拯救发展中国家数百万人的生命,我们正在考虑开发这些设备的创新方法。除了LED之外,我们还将开展LD甚至单光子源的研究。后者的设备按需发射一个且仅一个光子,是量子密码学和量子计算的一项支持技术。我们在蓝色单光子源的设计和制造方面已经处于世界领先地位。我们希望探索的领域不一定是新颜色,而是具有令人惊叹的新功能的设备,例如发射纠缠光子对。纠缠——阿尔伯特·爱因斯坦称之为“幽灵般的超距作用”——是一种奇特的现象,其中一个纠缠粒子的变化会影响另一个粒子,即使这两个粒子相距数英里。纠缠可用于实现完全安全的信息传输。氮化镓也可用于电子设备,因此剑桥和曼彻斯特的另一个新兴研究主题是氮化物晶体管的开发,这将减少高功率应用中以热量形式浪费的能量,例如计算机电源、电机驱动器或电力逆变器。总的来说,我们的研究有潜力为数百万人提供清洁水,大大减少能源消耗和温室气体排放,并实现完全安全的通信,但 GaN 即将出现许多新的应用,我们希望这个平台能够授予将帮助我们让英国保持领先地位这项杰出的开发技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of Micron-scale Photoluminescence Variation on Droop Measurements in InGaN/GaN Quantum Wells
微米级光致发光变化对 InGaN/GaN 量子阱中下垂测量的影响
  • DOI:
    http://dx.10.1088/1742-6596/1919/1/012011
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barrett R
  • 通讯作者:
    Barrett R
Cubic GaN and InGaN/GaN quantum wells
立方 GaN 和 InGaN/GaN 量子阱
  • DOI:
    http://dx.10.1063/5.0097558
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Binks D
  • 通讯作者:
    Binks D
Disentangling the Impact of Point Defect Density and Carrier Localization-Enhanced Auger Recombination on Efficiency Droop in (In,Ga)N/GaN Quantum Wells.
解开点缺陷密度和载流子局域化增强俄歇复合对 (In,Ga)N/GaN 量子阱效率下降的影响。
  • DOI:
    http://dx.10.1021/acsphotonics.3c00355
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Barrett RM
  • 通讯作者:
    Barrett RM
Cubic GaN and InGaN/GaN quantum wells
立方 GaN 和 InGaN/GaN 量子阱
  • DOI:
    http://dx.10.17863/cam.85747
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Binks D
  • 通讯作者:
    Binks D
Ti Alloyed a-Ga2O3: Route towards Wide Band Gap Engineering.
钛合金 a-Ga2O3:宽带隙工程之路。
  • DOI:
    http://dx.10.3390/mi11121128
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Barthel A
  • 通讯作者:
    Barthel A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Oliver其他文献

Macroplastique and Botox are superior to Macroplastique alone in the management of neurogenic vesicoureteric reflux in spinal cord injury population with presumed healthy bladders
Macroplastique 和 Botox 在治疗假定膀胱健康的脊髓损伤人群的神经源性膀胱输尿管反流方面优于单独使用 Macroplastique
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vasileios I Sakalis;Rachel Oliver;Peter J Guy;Melissa C Davies
  • 通讯作者:
    Melissa C Davies
Unusual absence of endothelium-dependent or -independent vasodilatation to purines or pyrimidines in the rat renal artery.
大鼠肾动脉中嘌呤或嘧啶异常缺乏内皮依赖性或非依赖性血管舒张作用。
  • DOI:
    10.1046/j.1523-1755.2003.00233.x
  • 发表时间:
    2003-10-01
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    G. Knight;Rachel Oliver;G. Burnstock
  • 通讯作者:
    G. Burnstock
Event-based sensor multiple hypothesis tracker for space domain awareness
用于空间域感知的基于事件的传感器多假设跟踪器
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rachel Oliver;Dmitry Savransky
  • 通讯作者:
    Dmitry Savransky
Nonparametric Analysis of Non-Euclidean Data on Shapes and Images
形状和图像非欧几里得数据的非参数分析
  • DOI:
    10.1007/s13171-018-0127-9
  • 发表时间:
    2018-02-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Bhattacharya;Rachel Oliver
  • 通讯作者:
    Rachel Oliver
Superiority of Bayes estimators over the MLE in high dimensional multinomial models and its implication for nonparametric Bayes theory
高维多项模型中贝叶斯估计量相对于 MLE 的优越性及其对非参数贝叶斯理论的启示

Rachel Oliver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Oliver', 18)}}的其他基金

Segregation of alloy and dopant atoms at defects in nitride materials
氮化物材料缺陷处合金和掺杂原子的偏析
  • 批准号:
    EP/Y004213/1
  • 财政年份:
    2024
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant
Quantum GaN-O-Photonics
量子 GaN-O-光子学
  • 批准号:
    EP/X040348/1
  • 财政年份:
    2023
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant
NP2: Hybrid Nanoparticle-Nanoporous nitride materials as a novel precision manufacture route to optoelectronic devices
NP2:混合纳米颗粒-纳米多孔氮化物材料作为光电器件的新型精密制造途径
  • 批准号:
    EP/X017028/1
  • 财政年份:
    2022
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant
Fast Switching Zincblende GaN LEDs
快速开关闪锌矿 GaN LED
  • 批准号:
    EP/W03557X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant
EPSRC-FNR Collaborative Proposal: Radiative Efficiency in Advanced Sulfide Chalcopyrites for Solar Cells (REACh)
EPSRC-FNR 合作提案:太阳能电池用先进硫化黄铜矿的辐射效率 (REACh)
  • 批准号:
    EP/V029231/1
  • 财政年份:
    2021
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant
Time-resolved cathodoluminescence scanning electron microscope
时间分辨阴极发光扫描电子显微镜
  • 批准号:
    EP/R025193/1
  • 财政年份:
    2018
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant
Simulation software for modelling nitride-based quantum light sources
用于模拟氮化物量子光源的仿真软件
  • 批准号:
    EP/R04502X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant
Integration of RF Circuits with High Speed GaN Switching on Silicon Substrates
在硅衬底上集成射频电路与高速 GaN 开关
  • 批准号:
    EP/N017927/1
  • 财政年份:
    2016
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant
Non-polar nitride quantum dots for application in single photon sources
用于单光子源应用的非极性氮化物量子点
  • 批准号:
    EP/M011682/1
  • 财政年份:
    2015
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant
Study of semi-polar and non-polar nitride based structures for opto-electronic device applications
用于光电器件应用的半极性和非极性氮化物基结构的研究
  • 批准号:
    EP/J003603/1
  • 财政年份:
    2012
  • 资助金额:
    $ 124.78万
  • 项目类别:
    Research Grant

相似国自然基金

网络协作影响蓝色海湾治理绩效的组态条件和因果机制分析
  • 批准号:
    42376224
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
矮牵牛PAL3参与调控液泡pH形成蓝色花的分子机理
  • 批准号:
    32302591
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强雷暴云上部蓝色放电的光电特征及诱发机制研究
  • 批准号:
    42375074
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
蓝色热激活延迟磷光Au(III)配合物的分子设计与激发态调控机制研究
  • 批准号:
    22303026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肠道“3D”类器官模型解析细胞自噬参与藻蓝色素改善肠屏障的分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

IGNITION: Improving green innovation for the blue revolution: New tools and opportunities for a more sustainable animal farming
IGNITION:改善蓝色革命的绿色创新:实现更可持续畜牧业的新工具和机遇
  • 批准号:
    10060185
  • 财政年份:
    2022
  • 资助金额:
    $ 124.78万
  • 项目类别:
    EU-Funded
eCIRP-Neutralizing mAb for Acute Lung Injury in Sepsis
eCIRP 中和单克隆抗体治疗脓毒症急性肺损伤
  • 批准号:
    10632117
  • 财政年份:
    2022
  • 资助金额:
    $ 124.78万
  • 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
  • 批准号:
    10652655
  • 财政年份:
    2022
  • 资助金额:
    $ 124.78万
  • 项目类别:
Aquaporin-4 regulation by NCX1 in post-ischemic brain swelling
NCX1 对缺血后脑肿胀中水通道蛋白 4 的调节
  • 批准号:
    10650854
  • 财政年份:
    2022
  • 资助金额:
    $ 124.78万
  • 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
  • 批准号:
    10522141
  • 财政年份:
    2022
  • 资助金额:
    $ 124.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了