Maximising the Carbon Impact of Wind Power
最大限度地提高风电的碳影响
基本信息
- 批准号:EP/N005996/1
- 负责人:
- 金额:$ 30.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The UK has invested heavily in wind power in recent years, and is widely expected to build much more capacity in future. One of the driving reasons is to reduce carbon emissions, but there has been no in-depth study of how effective wind power has been, or will be, at achieving this. The simple question of 'how much carbon dioxide does a wind farm save?' has a surprisingly complex answer as it depends not just on how much power the farm produces, but on how the rest of the electricity system responds to its production.Past work by academics and government bodies has concentrated on calculating the average emissions (in grams of carbon dioxide per unit of electricity) from the entire UK power sector in various future scenarios. This project will be the first to understand the marginal emissions from wind power: the change in national emissions from adding one more or one less wind farm to the power system, the driving factors behind this, and how those factors can be used to maximise the savings. The more carbon dioxide that each turbine saves, the fewer turbines will have to be built, and the lower the cost to consumers and the UK economy. This detailed study is necessary because not all power stations respond equally to the output from wind farms. We must identify which specific power stations reduce their output when wind generation increases: high-carbon coal or lower-carbon gas? Secondly, more power stations will have to run part-loaded to cope with the weather-driven variability in wind output. We must understand how large this effect is, how great an impact it has on station efficiency and thus on national emissions. Third, large-scale investment in wind power will change the mix of other power stations that the rest of the industry chooses to build, and those stations will have different emissions at times when the wind is not blowing. Finally, to provide a holistic view of emissions we must consider the carbon emitted when power stations are built or fossil fuels are extracted from the ground using Life Cycle Assessment methodology. We will investigate these issues using a range of techniques intelligently integrated across several academic disciplines to give a complete whole-systems picture of the emissions displaced by wind, and: 1) Address fundamental problems in the emerging field of using reanalysis weather data to simulate historic wind farm outputs, allowing the output from the UK's future mix of wind farms to be quantified.2) Produce the most detailed estimation of British power sector emissions, combining the output from every power station with their likely efficiency, derived from hourly emissions data from similar stations in the US (as these are not reported in Britain).3) Develop statistical regression techniques to discover how these emissions vary with the level of wind output, with fuel and carbon prices, and the accuracy of the wind forecast.4) Employ both engineering and economic models of the future electricity system to investigate how investment and operating decisions change with more wind power, and what this will mean for emissions. 5) Develop a reduced-order model of the global electricity system to replicate this analysis for other countries to ask whether the UK is well- or badly-placed to reduce emissions with wind power.Our aim is to understand the factors that affect the emissions savings from investing in wind power, so that these savings can be maximised. Energy storage, international interconnections, accurate output forecasts and a high carbon price will all help to increase the emissions savings from wind power, and we will quantify the effects of each.
近年来,英国在风电领域投入巨资,普遍预计未来将建设更多产能。驱动原因之一是减少碳排放,但目前还没有深入研究风力发电在实现这一目标方面已经或将如何有效。 “风电场能节省多少二氧化碳?”这个简单的问题有一个令人惊讶的复杂答案,因为它不仅取决于农场生产多少电力,还取决于电力系统的其他部分如何对其生产做出反应。学术界和政府机构过去的工作集中在计算平均排放量(以克为单位)在未来的各种情况下,整个英国电力部门的二氧化碳(每单位电力的二氧化碳)。该项目将是第一个了解风电边际排放的项目:在电力系统中增加或减少风电场导致的全国排放量变化、其背后的驱动因素,以及如何利用这些因素来最大化发电量。节省。每台涡轮机节省的二氧化碳越多,需要建造的涡轮机就越少,消费者和英国经济的成本就越低。这项详细的研究是必要的,因为并非所有发电站都对风电场的输出做出同样的反应。我们必须确定当风力发电增加时哪些特定发电站减少了发电量:高碳煤炭还是低碳天然气?其次,更多的发电站将不得不部分负荷运行,以应对天气导致的风力输出的变化。我们必须了解这种影响有多大,它对电站效率以及国家排放量有多大影响。第三,风电的大规模投资将改变其他行业选择建设的其他发电站的结构,这些发电站在无风时会产生不同的排放。最后,为了提供排放的整体视图,我们必须考虑使用生命周期评估方法建造发电站或从地下提取化石燃料时排放的碳。我们将使用一系列跨多个学科智能集成的技术来研究这些问题,以提供风排放排放的完整全系统图景,并且: 1) 解决使用再分析天气数据来模拟历史数据这一新兴领域的基本问题风电场的输出,从而可以量化英国未来风电场组合的输出。2) 对英国电力部门的排放进行最详细的估算,将每个发电站的输出与其可能的效率相结合,这些效率来自于每小时的排放数据美国的类似电台(因为英国没有报告这些)。3) 开发统计回归技术,以发现这些排放如何随风力输出水平、燃料和碳价格以及风力预测的准确性而变化。4) 同时采用工程和经济手段未来电力系统的模型,以研究投资和运营决策如何随着风力发电的增加而变化,以及这对排放意味着什么。 5) 开发全球电力系统的降阶模型,为其他国家复制这一分析,以了解英国在利用风电减少排放方面处于有利还是不利地位。我们的目标是了解影响排放的因素通过投资风电节省资金,从而最大限度地实现这些节省。储能、国际互联、准确的产量预测和高碳价都将有助于增加风电的减排量,我们将量化每一项的效果。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An iterative algorithm for regret minimization in flexible demand scheduling problems
灵活需求调度问题中遗憾最小化的迭代算法
- DOI:10.1002/adc2.92
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dong Z
- 通讯作者:Dong Z
Global levelised cost of electricity from offshore wind
- DOI:10.1016/j.energy.2019.116357
- 发表时间:2019-12-15
- 期刊:
- 影响因子:9
- 作者:Bosch, Jonathan;Staffell, Lain;Hawkes, Adam D.
- 通讯作者:Hawkes, Adam D.
Calculating system integration costs of low-carbon generation technologies in future GB electricity system
计算未来英国电力系统中低碳发电技术的系统集成成本
- DOI:10.1049/cp.2016.0529
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Aunedi M
- 通讯作者:Aunedi M
Transmission Network Investment With Distributed Energy Resources and Distributionally Robust Security
- DOI:10.1109/tpwrs.2018.2867226
- 发表时间:2019-11
- 期刊:
- 影响因子:6.6
- 作者:Diego Alvarado;Alexandre Moreira;R. Moreno;G. Strbac
- 通讯作者:Diego Alvarado;Alexandre Moreira;R. Moreno;G. Strbac
A stochastic dual dynamic programming approach for optimal operation of DER aggregators
- DOI:10.1109/ptc.2017.7981213
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:Panagiotis Fatouros;I. Konstantelos;D. Papadaskalopoulos;G. Strbac
- 通讯作者:Panagiotis Fatouros;I. Konstantelos;D. Papadaskalopoulos;G. Strbac
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Green其他文献
What Professional Development Practices Support The Successful Integration Of Technology Within A Standards-Based Educational (SBE) System
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Richard Green - 通讯作者:
Richard Green
Sibling sex ratio of boys with gender identity disorder.
性别认同障碍男孩的兄弟姐妹性别比。
- DOI:
10.1111/j.1469-7610.1997.tb01541.x - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
K. Zucker;Richard Green;Susan W. Coates;Bernard Zuger;Peggy T. Cohen;Graziella Mansueto Zecca;Vincenza Lertora;John Money;Sarah Hahn;S. Bradley;Ray Blanchard - 通讯作者:
Ray Blanchard
Lesbian mothers and their children: A comparison with solo parent heterosexual mothers and their children
女同性恋母亲和她们的孩子:与单亲异性恋母亲和孩子的比较
- DOI:
10.1007/bf01542224 - 发表时间:
1986 - 期刊:
- 影响因子:3.8
- 作者:
Richard Green;J. Mandel;M. Hotvedt;James Gray;Laurel A. Smith - 通讯作者:
Laurel A. Smith
Quantifying robustness: 3D tree point cloud skeletonization with smart-tree in noisy domains
量化稳健性:在噪声域中使用智能树进行 3D 树点云骨架化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Harry Dobbs;O. Batchelor;C. Peat;James Atlas;Richard Green - 通讯作者:
Richard Green
Closing the gap-Design and Technology education and skill for life and work
缩小差距——设计和技术教育以及生活和工作技能
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ryuta TANI;Yutaka OHARA;田中伸;茅野公穂・嶋田和美・荻原啓一;奈良教育大学教職大学院ブックレット作成委員会著;須本良夫;高木亜希子;礒田正美;原田智仁;Norio Ikeno;高木亜希子・粕谷恭子;Richard Green - 通讯作者:
Richard Green
Richard Green的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Green', 18)}}的其他基金
Pasture to Plate (P2P): realising the enormous potential of UK grasslands
从牧场到餐桌(P2P):实现英国草原的巨大潜力
- 批准号:
BB/W018012/1 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
Research Grant
NSF2026: EAGER: The evolution and diversity of the human brain
NSF2026:EAGER:人脑的进化和多样性
- 批准号:
2034037 - 财政年份:2020
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
JPI Urban Europe/NSFC: Socio-Techno-Economic Pathways for sustainable Urban energy develoPment
JPI Urban Europe/NSFC:可持续城市能源发展的社会技术经济途径
- 批准号:
ES/T000112/1 - 财政年份:2019
- 资助金额:
$ 30.04万 - 项目类别:
Research Grant
Business, Economics, Planning and Policy for Energy Storage in Low-Carbon Futures
低碳未来储能的商业、经济、规划和政策
- 批准号:
EP/L014386/1 - 财政年份:2014
- 资助金额:
$ 30.04万 - 项目类别:
Research Grant
Polytopal Subcomplexes and Homology Representations
多面亚复合体和同源表示
- 批准号:
0905768 - 财政年份:2009
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Postdoctoral Research Fellowship in Biological Informatics for FY 2006
2006财年生物信息学博士后研究奖学金
- 批准号:
0532926 - 财政年份:2005
- 资助金额:
$ 30.04万 - 项目类别:
Fellowship Award
Population Consequences of Foraging Behavior
觅食行为对种群的影响
- 批准号:
8817954 - 财政年份:1989
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Characterization of Cardiac Adenosine Receptor Systems
心脏腺苷受体系统的表征
- 批准号:
8719594 - 财政年份:1988
- 资助金额:
$ 30.04万 - 项目类别:
Continuing Grant
Summer Pre-College Teacher Development Project in the Sciences
夏季大学预科教师科学发展项目
- 批准号:
7713413 - 财政年份:1977
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
相似国自然基金
西北冰洋陆架环流对中北冰洋碳汇机制的影响研究
- 批准号:42376252
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
根际固氮菌类群的功能特性及其残体对土壤有机碳周转的影响机制
- 批准号:42377127
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
抚育间伐强度对秦岭南坡锐齿栎天然次生林碳储量和温室气体通量的影响机制研究
- 批准号:32371671
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
黄土丘陵区人工林混交结构对土壤碳-水权衡关系的影响及调控机制
- 批准号:42307462
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
灌木扩张对北方草本湿地中土壤矿物结合有机碳的影响及机制
- 批准号:42371051
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
- 批准号:
10112272 - 财政年份:2024
- 资助金额:
$ 30.04万 - 项目类别:
SME Support
RAPID: Investigation of Microbial:Black Carbon feedback Processes that Impact Icefield Melt in High Latitude Systems.
RAPID:影响高纬度系统中冰原融化的微生物:黑碳反馈过程的调查。
- 批准号:
2414438 - 财政年份:2024
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
PFI (MCA): Embodied Carbon Emission and Environmental Impact from Built Environment
PFI (MCA):建筑环境的隐含碳排放和环境影响
- 批准号:
2317971 - 财政年份:2024
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
Spatial impact of carbon pricing in Japan: A quantitative spatial equilibrium analysis
日本碳定价的空间影响:定量空间均衡分析
- 批准号:
24K04837 - 财政年份:2024
- 资助金额:
$ 30.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the impact of future ocean acidification on the global carbon cycle
评估未来海洋酸化对全球碳循环的影响
- 批准号:
23H01284 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)