Radical-Bridged Lanthanide Molecular Nanomagnets
自由基桥联镧系元素纳米磁体
基本信息
- 批准号:EP/M022064/1
- 负责人:
- 金额:$ 124.05万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rare-earth metals such as neodymium, terbium and dysprosium have unusual and highly desirable magnetic properties; some of their alloys are amongst the strongest known permanent magnets. Rare earth magnets have widespread applications in a range of settings, including computer hard-disk drives. Magnetic materials are particularly important for computing because they provide the means by which digital information is transferred to, stored within, and read from an information storage unit. The storage unit typically consists of a collection of magnetic domains, where ordering occurs across dimensions of hundreds of nanometres. The size of the magnetic domain is crucial because it determines the amount of information that can be stored and processed.One of the most important tasks facing society today is to find ways of dealing with so-called Big Data, the term used to describe digital information that occurs in vast amounts and is of an increasingly complex nature. Processing Big Data with conventional magnetic storage media will eventually prove to be impossible, hence the development of new information storage devices is the grand challenge. The key to success with this challenge is miniaturization, hence this project will develop a new generation of magnetic materials on the molecular scale, with dimensions of only a few nanometres.The molecular materials with which this project is concerned are known as single-molecule magnets (SMMs). In contrast to traditional permanent magnets, SMMs are discrete molecular nano-magnets that retain magnetization in ways that do not rely on interactions across large distances, hence they offer unique properties that have been proposed as the basis of ultrahigh-density information technology, with processing at unprecedentedly fast speeds. SMMs have also been proposed as the working components of nano-scale molecular spintronic devices. The drawback with SMMs is that all examples function only at liquid-helium temperatures: this project will develop SMMs that function at more practical temperatures, which will introduce the possibility of developing prototype devices. More broadly, achieving the aims of this project will make an important contribution towards advancing the EPSRC Nanoscale Design of Functional Materials Grand Challenge.The aims of the project will be achieved using innovative synthetic strategies based on molecular rare earth compounds in which the metal centres are linked by a series of novel magnetic organic groups. The key advance that will be enabled by this project will be with the magnetic organic linkers, which provide an innovative way of preventing the processes that otherwise switch off the magnetic memory of SMMs. An important feature of the molecular design process is the ability to change the magnetic properties at the atomic level by, for example, switching the atoms that connect the rare earth metals from phosphorus to arsenic, and from arsenic to other main group elements. Alternatively, a family of organic linkers with the capacity to change their magnetic moments via targeted chemical modifications have also been proposed, a strategy that will allow fine tuning of SMM properties. The experimental approach will be complemented by high-level theoretical calculations, which will provide detailed insight into the new SMMs and will provide a rational way of developing improved systems.Ultimately, we will develop SMMs that function at temperatures that can be reached by cooling with liquid nitrogen. Such materials would represent a step-change in molecular nanomagnetism, and would result in tremendous impact across the scientific community, with the potential to make impact more widely in society.
稀土金属,如钕、铽和镝,具有不寻常且非常理想的磁性。他们的一些合金是已知最强的永磁体之一。稀土磁体在一系列环境中具有广泛的应用,包括计算机硬盘驱动器。磁性材料对于计算尤其重要,因为它们提供了将数字信息传输到信息存储单元、存储在信息存储单元中以及从信息存储单元读取数字信息的方法。存储单元通常由磁域集合组成,其中有序发生在数百纳米的维度上。磁域的大小至关重要,因为它决定了可以存储和处理的信息量。当今社会面临的最重要任务之一是找到处理所谓大数据(用于描述数字的术语)的方法。信息量巨大且性质日益复杂。使用传统的磁存储介质处理大数据最终将被证明是不可能的,因此开发新的信息存储设备是巨大的挑战。成功应对这一挑战的关键是小型化,因此该项目将在分子尺度上开发新一代磁性材料,尺寸仅为几纳米。该项目涉及的分子材料被称为单分子磁体(SMM)。与传统永磁体相比,SMM 是离散分子纳米磁体,其保持磁化的方式不依赖于长距离相互作用,因此它们具有独特的特性,已被提议作为超高密度信息技术的基础,具有处理能力以前所未有的速度。 SMM 也被提议作为纳米级分子自旋电子器件的工作组件。 SMM 的缺点是所有示例仅在液氦温度下运行:该项目将开发在更实用的温度下运行的 SMM,这将引入开发原型设备的可能性。更广泛地说,实现该项目的目标将为推进 EPSRC 功能材料纳米级设计大挑战做出重要贡献。该项目的目标将通过使用基于分子稀土化合物的创新合成策略来实现,其中金属中心为由一系列新颖的磁性有机基团连接。该项目将实现的关键进展是磁性有机连接器,它提供了一种创新方法来防止关闭 SMM 磁存储器的过程。分子设计过程的一个重要特征是能够在原子水平上改变磁性,例如将连接稀土金属的原子从磷切换到砷,从砷切换到其他主族元素。另外,还提出了一系列能够通过有针对性的化学修饰来改变磁矩的有机连接体,这是一种可以微调 SMM 特性的策略。实验方法将得到高级理论计算的补充,这将提供对新 SMM 的详细了解,并提供开发改进系统的合理方法。最终,我们将开发出可在通过冷却达到的温度下运行的 SMM。液氮。这种材料将代表分子纳米磁性的巨大变化,并将对整个科学界产生巨大影响,并有可能在社会上产生更广泛的影响。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cyclopentadienyl Ligands in Lanthanide Single-Molecule Magnets: One Ring To Rule Them All?
- DOI:10.1021/acs.accounts.8b00270
- 发表时间:2018-08-01
- 期刊:
- 影响因子:18.3
- 作者:Day, Benjamin M.;Guo, Fu-Sheng;Layfield, Richard A.
- 通讯作者:Layfield, Richard A.
A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit
轴向极限作用的镝茂金属单分子磁体
- DOI:10.1002/ange.201705426
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Guo F
- 通讯作者:Guo F
Double Ligand Activation in Silyl-Substituted Rare-Earth Cyclobutadienyl Complexes
- DOI:10.1021/acs.organomet.9b00763
- 发表时间:2020-01-13
- 期刊:
- 影响因子:2.8
- 作者:Chakraborty, Anindita;Day, Benjamin M.;Layfield, Richard A.
- 通讯作者:Layfield, Richard A.
Dominance of Cyclobutadienyl Over Cyclopentadienyl in the Crystal Field Splitting in Dysprosium Single-Molecule Magnets
镝单分子磁体晶体场分裂中环丁二烯基相对于环戊二烯基的优势
- DOI:10.1002/ange.202200525
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Durrant J
- 通讯作者:Durrant J
Uranocenium: Synthesis, Structure, and Chemical Bonding
铀铍:合成、结构和化学键合
- DOI:10.1002/ange.201903681
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Guo F
- 通讯作者:Guo F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Layfield其他文献
Richard Layfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Layfield', 18)}}的其他基金
Lanthanides and Actinides in the +1 Oxidation State
第一氧化态的镧系元素和锕系元素
- 批准号:
EP/X036626/1 - 财政年份:2023
- 资助金额:
$ 124.05万 - 项目类别:
Research Grant
A Single-Crystal X-ray Diffractometer for High-Power, High-Throughput Chemical Crystallography
用于高功率、高通量化学晶体学的单晶 X 射线衍射仪
- 批准号:
EP/X013332/1 - 财政年份:2023
- 资助金额:
$ 124.05万 - 项目类别:
Research Grant
Isolobal Solutions to the Hysteresis Challenge in Single-Molecule Magnetism
单分子磁性磁滞挑战的等瓣解决方案
- 批准号:
EP/V003089/1 - 财政年份:2021
- 资助金额:
$ 124.05万 - 项目类别:
Research Grant
Metal-organic frameworks as platforms for air-stable organometallic single-molecule magnets
金属有机框架作为空气稳定有机金属单分子磁体的平台
- 批准号:
EP/V046659/1 - 财政年份:2021
- 资助金额:
$ 124.05万 - 项目类别:
Research Grant
Radical-Bridged Lanthanide Molecular Nanomagnets
自由基桥联镧系元素纳米磁体
- 批准号:
EP/M022064/2 - 财政年份:2018
- 资助金额:
$ 124.05万 - 项目类别:
Fellowship
Single-molecule magnetism in lanthanide organometallics
镧系有机金属中的单分子磁性
- 批准号:
EP/K008722/1 - 财政年份:2013
- 资助金额:
$ 124.05万 - 项目类别:
Research Grant
相似国自然基金
超深裂缝性地层温敏黏结强化桥接承压堵漏机理
- 批准号:52374023
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
CGRP神经肽通过N-cadherin趋化筋膜成纤维细胞“桥接式牵引”MFUS促进皮肤再生的机制研究
- 批准号:82372550
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
亚铁还原脱氯过程中羟基的电子桥接作用、机制及调控策略
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于O-GlcNAc糖基化—HIF-1α桥接FAO途径探讨黄葵素“清利和络”改善DKD肾纤维化的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多参量光场调制的高速并行激光三维光子桥接技术研究
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
相似海外基金
EAR-PF In-situ and bulk sulfur isotope constraints on crustal recycling: a bridged investigation of superdeep diamonds and ocean island basalts
EAR-PF 原位和散装硫同位素对地壳循环的限制:超深钻石和洋岛玄武岩的桥接研究
- 批准号:
2052944 - 财政年份:2022
- 资助金额:
$ 124.05万 - 项目类别:
Fellowship Award
Isolation of the Oxido-Bridged Ru(IV)-Ru(IV) Dinuclear Complexes - Development of Model Compounds of Reaction Intermediates in Nature -
氧化桥 Ru(IV)-Ru(IV) 双核配合物的分离 - 自然反应中间体模型化合物的开发 -
- 批准号:
22K14696 - 财政年份:2022
- 资助金额:
$ 124.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Toward Functional Materials Based on N-Bridged Amidine-N-oxides
基于N-桥脒-N-氧化物的功能材料
- 批准号:
572818-2022 - 财政年份:2022
- 资助金额:
$ 124.05万 - 项目类别:
University Undergraduate Student Research Awards
Fundamentals of Chemistry that Guide Formation of Sulfur-bridged Bi- and Multi-metallic Molecular Units
指导硫桥双金属和多金属分子单元形成的化学基础
- 批准号:
2102159 - 财政年份:2021
- 资助金额:
$ 124.05万 - 项目类别:
Standard Grant
Development of alkoxy-bridged dinuclear non-precious metal complex catalysts for synthesis and alcoholysis of amide derivatives
用于酰胺衍生物合成和醇解的烷氧基桥联双核非贵金属配合物催化剂的研制
- 批准号:
20K15277 - 财政年份:2020
- 资助金额:
$ 124.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists