Radical-Bridged Lanthanide Molecular Nanomagnets
自由基桥联镧系元素纳米磁体
基本信息
- 批准号:EP/M022064/2
- 负责人:
- 金额:$ 57.8万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rare-earth metals such as neodymium, terbium and dysprosium have unusual and highly desirable magnetic properties; some of their alloys are amongst the strongest known permanent magnets. Rare earth magnets have widespread applications in a range of settings, including computer hard-disk drives. Magnetic materials are particularly important for computing because they provide the means by which digital information is transferred to, stored within, and read from an information storage unit. The storage unit typically consists of a collection of magnetic domains, where ordering occurs across dimensions of hundreds of nanometres. The size of the magnetic domain is crucial because it determines the amount of information that can be stored and processed.One of the most important tasks facing society today is to find ways of dealing with so-called Big Data, the term used to describe digital information that occurs in vast amounts and is of an increasingly complex nature. Processing Big Data with conventional magnetic storage media will eventually prove to be impossible, hence the development of new information storage devices is the grand challenge. The key to success with this challenge is miniaturization, hence this project will develop a new generation of magnetic materials on the molecular scale, with dimensions of only a few nanometres.The molecular materials with which this project is concerned are known as single-molecule magnets (SMMs). In contrast to traditional permanent magnets, SMMs are discrete molecular nano-magnets that retain magnetization in ways that do not rely on interactions across large distances, hence they offer unique properties that have been proposed as the basis of ultrahigh-density information technology, with processing at unprecedentedly fast speeds. SMMs have also been proposed as the working components of nano-scale molecular spintronic devices. The drawback with SMMs is that all examples function only at liquid-helium temperatures: this project will develop SMMs that function at more practical temperatures, which will introduce the possibility of developing prototype devices. More broadly, achieving the aims of this project will make an important contribution towards advancing the EPSRC Nanoscale Design of Functional Materials Grand Challenge.The aims of the project will be achieved using innovative synthetic strategies based on molecular rare earth compounds in which the metal centres are linked by a series of novel magnetic organic groups. The key advance that will be enabled by this project will be with the magnetic organic linkers, which provide an innovative way of preventing the processes that otherwise switch off the magnetic memory of SMMs. An important feature of the molecular design process is the ability to change the magnetic properties at the atomic level by, for example, switching the atoms that connect the rare earth metals from phosphorus to arsenic, and from arsenic to other main group elements. Alternatively, a family of organic linkers with the capacity to change their magnetic moments via targeted chemical modifications have also been proposed, a strategy that will allow fine tuning of SMM properties. The experimental approach will be complemented by high-level theoretical calculations, which will provide detailed insight into the new SMMs and will provide a rational way of developing improved systems.Ultimately, we will develop SMMs that function at temperatures that can be reached by cooling with liquid nitrogen. Such materials would represent a step-change in molecular nanomagnetism, and would result in tremendous impact across the scientific community, with the potential to make impact more widely in society.
稀土金属,例如霓虹灯,Terbium和dosprosium具有不寻常且高度理想的磁性特性。他们的一些合金是最强的已知永久磁铁之一。稀土磁铁在包括计算机硬盘驱动器在内的一系列设置中具有广泛的应用。磁性材料对于计算尤其重要,因为它们提供了将数字信息传输到内部存储和从信息存储单元中读取的手段。存储单元通常由磁性域的集合组成,其中排序发生在数百个纳米的尺寸之间。磁性域的大小至关重要,因为它确定了可以存储和处理的信息量。当今社会面临的最重要任务之一是找到处理所谓的大数据的方法,该术语用于描述大量数量的数字信息,并且具有越来越复杂的性质。使用常规磁性存储媒体处理大数据最终将被证明是不可能的,因此,新信息存储设备的开发是巨大的挑战。这项挑战的成功的关键是小型化,因此该项目将在分子尺度上开发新一代的磁性材料,尺寸仅为少量纳米。该项目所关心的分子材料被称为单分子磁铁(SMMS)。与传统的永久磁铁相反,SMM是离散的分子纳米磁铁,以不依赖大距离之间相互作用的方式保留磁化,因此它们提供了已提出的独特属性,这些属性是超高密度信息技术的基础,并在毫无前提的快速速度下处理。还提出了SMM作为纳米级分子自旋器械的工作组件。 SMM的缺点是所有示例仅在液态温度下起作用:该项目将开发在更实际的温度下运行的SMM,这将引入开发原型设备的可能性。更广泛地说,实现该项目的目标将为推进EPSRC纳米级功能材料的设计做出重要贡献。该项目的目的将使用基于分子稀土化合物的创新合成策略来实现,在该策略中,金属中心通过一系列新型磁性有机体将金属中心与金属中心联系起来。该项目将启用的关键进步将是磁性有机接头,这提供了一种创新的方法,以防止其否则会关闭SMM的磁性内存的过程。分子设计过程的一个重要特征是,通过例如将将稀土金属从磷到砷连接起来的原子,从砷中,从砷转换为其他主要组元素,可以改变原子水平的磁性。另外,还提出了具有通过靶向化学修饰改变其磁性力矩的有机接头家族,该策略将允许对SMM性质进行微调。高级理论计算将补充实验方法,该计算将为新的SMM提供详细的见解,并将提供一种合理的方法来开发改进的系统。我们将开发在可以通过液态氮气冷却可以在温度下运行的SMMS。这样的材料将代表分子纳米磁性的逐步变化,并会在整个科学界产生巨大的影响,并有可能在社会中更广泛地影响。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Double Ligand Activation in Silyl-Substituted Rare-Earth Cyclobutadienyl Complexes
- DOI:10.1021/acs.organomet.9b00763
- 发表时间:2020-01-13
- 期刊:
- 影响因子:2.8
- 作者:Chakraborty, Anindita;Day, Benjamin M.;Layfield, Richard A.
- 通讯作者:Layfield, Richard A.
Uranocenium: Synthesis, Structure, and Chemical Bonding
铀铍:合成、结构和化学键合
- DOI:10.1002/ange.201903681
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Guo F
- 通讯作者:Guo F
Dominance of Cyclobutadienyl Over Cyclopentadienyl in the Crystal Field Splitting in Dysprosium Single-Molecule Magnets.
镝单分子磁体中,环丁二烯基相对于环戊二烯基在晶体场分裂中的主导地位
- DOI:10.1002/anie.202200525
- 发表时间:2022-04-19
- 期刊:
- 影响因子:16.6
- 作者:Durrant, James P.;Day, Benjamin M.;Tang, Jinkui;Mansikkamaki, Akseli;Layfield, Richard A.
- 通讯作者:Layfield, Richard A.
Isolation of a Perfectly Linear Uranium(II) Metallocene
完美线性铀(II)茂金属的分离
- DOI:10.1002/ange.201912663
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Guo F
- 通讯作者:Guo F
Cyclopentadienyl Ligands in Lanthanide Single-Molecule Magnets: One Ring To Rule Them All?
- DOI:10.1021/acs.accounts.8b00270
- 发表时间:2018-08-01
- 期刊:
- 影响因子:18.3
- 作者:Day, Benjamin M.;Guo, Fu-Sheng;Layfield, Richard A.
- 通讯作者:Layfield, Richard A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Layfield其他文献
Richard Layfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Layfield', 18)}}的其他基金
Lanthanides and Actinides in the +1 Oxidation State
第一氧化态的镧系元素和锕系元素
- 批准号:
EP/X036626/1 - 财政年份:2023
- 资助金额:
$ 57.8万 - 项目类别:
Research Grant
A Single-Crystal X-ray Diffractometer for High-Power, High-Throughput Chemical Crystallography
用于高功率、高通量化学晶体学的单晶 X 射线衍射仪
- 批准号:
EP/X013332/1 - 财政年份:2023
- 资助金额:
$ 57.8万 - 项目类别:
Research Grant
Isolobal Solutions to the Hysteresis Challenge in Single-Molecule Magnetism
单分子磁性磁滞挑战的等瓣解决方案
- 批准号:
EP/V003089/1 - 财政年份:2021
- 资助金额:
$ 57.8万 - 项目类别:
Research Grant
Metal-organic frameworks as platforms for air-stable organometallic single-molecule magnets
金属有机框架作为空气稳定有机金属单分子磁体的平台
- 批准号:
EP/V046659/1 - 财政年份:2021
- 资助金额:
$ 57.8万 - 项目类别:
Research Grant
Radical-Bridged Lanthanide Molecular Nanomagnets
自由基桥联镧系元素纳米磁体
- 批准号:
EP/M022064/1 - 财政年份:2015
- 资助金额:
$ 57.8万 - 项目类别:
Fellowship
Single-molecule magnetism in lanthanide organometallics
镧系有机金属中的单分子磁性
- 批准号:
EP/K008722/1 - 财政年份:2013
- 资助金额:
$ 57.8万 - 项目类别:
Research Grant
相似国自然基金
CGRP神经肽通过N-cadherin趋化筋膜成纤维细胞“桥接式牵引”MFUS促进皮肤再生的机制研究
- 批准号:82372550
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
环境—荷载作用下UHPC梁多裂缝动态扩展机制与纤维桥接量化理论研究
- 批准号:52308129
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
超深裂缝性地层温敏黏结强化桥接承压堵漏机理
- 批准号:52374023
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于O-GlcNAc糖基化—HIF-1α桥接FAO途径探讨黄葵素“清利和络”改善DKD肾纤维化的机制研究
- 批准号:82205025
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚铁还原脱氯过程中羟基的电子桥接作用、机制及调控策略
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
EAR-PF In-situ and bulk sulfur isotope constraints on crustal recycling: a bridged investigation of superdeep diamonds and ocean island basalts
EAR-PF 原位和散装硫同位素对地壳循环的限制:超深钻石和洋岛玄武岩的桥接研究
- 批准号:
2052944 - 财政年份:2022
- 资助金额:
$ 57.8万 - 项目类别:
Fellowship Award
Isolation of the Oxido-Bridged Ru(IV)-Ru(IV) Dinuclear Complexes - Development of Model Compounds of Reaction Intermediates in Nature -
氧化桥 Ru(IV)-Ru(IV) 双核配合物的分离 - 自然反应中间体模型化合物的开发 -
- 批准号:
22K14696 - 财政年份:2022
- 资助金额:
$ 57.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Toward Functional Materials Based on N-Bridged Amidine-N-oxides
基于N-桥脒-N-氧化物的功能材料
- 批准号:
572818-2022 - 财政年份:2022
- 资助金额:
$ 57.8万 - 项目类别:
University Undergraduate Student Research Awards
Fundamentals of Chemistry that Guide Formation of Sulfur-bridged Bi- and Multi-metallic Molecular Units
指导硫桥双金属和多金属分子单元形成的化学基础
- 批准号:
2102159 - 财政年份:2021
- 资助金额:
$ 57.8万 - 项目类别:
Standard Grant
Development of alkoxy-bridged dinuclear non-precious metal complex catalysts for synthesis and alcoholysis of amide derivatives
用于酰胺衍生物合成和醇解的烷氧基桥联双核非贵金属配合物催化剂的研制
- 批准号:
20K15277 - 财政年份:2020
- 资助金额:
$ 57.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists