From Processing to Simulated In-Reactor Performance of Zr Cladding.

从锆熔壳的加工到模拟反应堆内性能。

基本信息

  • 批准号:
    EP/M018369/1
  • 负责人:
  • 金额:
    $ 62.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Nuclear energy will play a critical role in the future of secure, affordable and low-carbon power generation. The UK is committed to a greenhouse emissions target of 80% of pre-1990 levels by 2050 and as part of this, between now and then, it is likely that the percentage of power generation via nuclear will have to increase by somewhere between two- and three-times.The vast majority of nuclear power is generated by light water nuclear reactors. These use cladding made from various types of zirconium alloy to contain ('clad') nuclear fuel, creating a barrier between highly active fuel/fission products and the coolant. Zirconium is considered an ideal material for this purpose, as it has excellent corrosion resistance properties and a small neutron cross section, meaning that it has a low rate of neutron absorption. These properties make zirconium alloys fundamentally more suitable than many other materials in reactor conditions.There is still much more to be learnt about the behaviour and durability of zirconium alloys, in order to enhance their performance and the efficiency of nuclear power generation. If we gain further understanding about how these materials behave in a nuclear reactor, we can more accurately predict the 'life' of the clad and even develop new, more sophisticated alloys - advancements which can minimise new nuclear waste production and further enhance fuel and reactor safety.Zirconium alloy research is therefore at the heart of nuclear power generation and safety. Within this context, this project aims to develop increased understanding in the field of zirconium processing and its relationship to in-reactor performance. The UK-India Civil Nuclear Collaboration is an on-going initiative to promote cooperative research in the area of nuclear energy, and this Phase III project builds upon a highly successful project undertaken in Phase I. The previous collaboration, between the University of Manchester and the Bhabha Atomic Research Centre (BARC) in India, made significant developments in the understanding of zirconium alloys, through both experimental and modelling work. This work has already had direct relevance to, and application by, the nuclear industry.This project aims to directly follow-on from this work, adopting a 'cradle-to-grave' approach intended to gain further understanding about the in-reactor performance of zirconium, including how the initial 'processing' of the material might impact on its properties. The proposed work will again be carried-out with partners at BARC, as well as at the Indira Gandhi Centre for Atomic Research (IGCAR).Once new hypotheses about zirconium are developed, including potential new alloy compositions, these must be thoroughly tested in reactor conditions before real-world application. This is a costly and time-consuming process, with few test reactors available to researchers and the costs/experimental difficulties associated with working on radioactive material. Partly in response to this, nearly £30m has been invested into the development of the University of Manchester's Dalton Cumbrian Facility (DCF), designed to allow research on irradiated and activated materials.DCF will enable the other key aspect of this project: the development of novel experimental set-ups (pioneered at the University of Michigan) at both DCF and IGCAR. These experiments will allow the investigation of material degradation during irradiation, mimicking the conditions experienced in reactors without producing radioactive samples, and so drive forward accurate, practical understanding of zirconium performance, enhancing efficient, safe nuclear power generation.This project brings together outstanding capabilities and expertise from the UK (Manchester and Sheffield) and India (BARC and IGCAR), enabling a unique research programme that will have impact for the nuclear industry and research, as well as helping to develop new experimental techniques for the field.
核能将在安全,负担得起和低碳发电的未来中发挥关键作用。到2050年,英国致力于1990年前水平的80%的温室排放目标,并且作为此部分,从现在到现在,通过核发电的百分比很可能必须增加两次和三倍的范围。绝大多数核电是由轻度水核反应器产生的。这些使用由各种类型的锆合金制成的覆层,以含有(“ clad”)核燃料,在高度活跃的燃料/裂变产品和冷却液之间产生障碍。锆被认为是为此目的的理想材料,因为它具有出色的耐腐蚀性特性和一个小的中子横截面,这意味着它具有较低的中子滥用率。这些特性使锆合金从根本上比反应堆条件下的许多其他材料更合适。为了提高其性能和核发电的效率,还需要了解更多有关锆合金的行为和耐用性。如果我们进一步了解这些材料在核反应堆中的表现,我们可以更准确地预测外壳的“生命”,甚至可以开发出新的,更复杂的合金 - 可以最大程度地减少新的核废料产生的进步,并进一步增强燃料和反应堆的安全性。因此,岩石合金研究是核电力产生和安全的核心。在这种情况下,该项目旨在建立在锆处理领域​​及其与反应器绩效的关系的增强理解。英国 - 印度民事核合作是一项持续的倡议,旨在促进核能领域的合作研究,而这一III阶段项目建立在第一阶段的一项非常成功的项目。这项工作已经与核工业直接相关。该项目旨在直接跟进这项工作,采用一种旨在进一步了解锆石的反应器表现的“摇篮对垃圾”方法,包括对材料的初始“处理”如何影响其特性。拟议的工作将再次与BARC的合作伙伴以及Indira Gandhi原子研究中心(IGCAR)一起进行。开发了有关锆的新假设,包括潜在的新合金组成,必须在现实情况下在反应堆条件下在反应堆条件下进行彻底测试。这是一个昂贵且耗时的过程,研究人员很少有测试反应器以及与放射性材料工作相关的成本/实验困难。为此,为此,将近3000万英镑投资于曼彻斯特大学的道尔顿坎布里安设施(DCF)的发展,旨在允许对辐射和激活的材料进行研究。 These experiments will allow the investment of material degradation during irradiation, mimicking the conditions experienced in reactors without producing radioactive samples, and so drive forward accurate, practical understanding of zirconium performance, enhancing effective, safe nuclear power generation.This project brings together outstanding capabilities and expertise from the UK (Manchester and Sheffield) and India (BARC and IGCAR), enabling a unique research programme that will have impact for the nuclear industry and研究,并帮助开发该领域的新实验技术。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The effect of cold work on the transformation kinetics and texture of a zirconium alloy during fast thermal cycling
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Preuss其他文献

Fractional densities and character of dislocations in different slip modes from powder diffraction patterns
粉末衍射图样中不同滑移模式下位错的分数密度和特征
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    T. Ungár;G. Ribárik;L. Balogh;R. Thomas;Omer Koc;Michael Preuss;C. Race;P. Frankel
  • 通讯作者:
    P. Frankel
17. BRIDGEPRS: A POWERFUL MULTI-ANCESTRY POLYGENIC RISK SCORE METHOD
  • DOI:
    10.1016/j.euroneuro.2022.07.108
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paul O'Reilly;Clive Hoggart;Shing Wan Choi;Michael Preuss
  • 通讯作者:
    Michael Preuss
Identification, classification and characterisation of hydrides in Zr alloys
Zr合金中氢化物的识别、分类和表征
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Mia Maric;R. Thomas;Alec Davis;D. Lunt;Jack Donoghue;Ali Gholinia;Marc De Graef;T. Ungár;Pierre Barberis;F. Bourlier;P. Frankel;P. Shanthraj;Michael Preuss
  • 通讯作者:
    Michael Preuss
Evolution of Zr(Fe,Cr)<sub>2</sub> second phase particles in Zircaloy-2 under heavy ion irradiation
  • DOI:
    10.1016/j.jnucmat.2024.155081
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kieran Lynch;Ömer Koç;Graeme Greaves;Alexander Carruthers;Mia Maric;Michael Preuss;Aidan Cole-Baker;Philipp Frankel;Joseph Robson
  • 通讯作者:
    Joseph Robson
On the Application of Xe+ Plasma FIB for Micro-fabrication of Small-scale Tensile Specimens
Xe等离子体FIB在小型拉伸试样微细加工中的应用
  • DOI:
    10.1007/s11340-019-00528-w
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Albert D. Smith;J. Donoghue;A. Garner;B. Winiarski;Etienne Bousser;James Carr;Julia Behnsen;Timothy L. Burnett;R. Wheeler;Keith Wilford;P. J. Withers;Michael Preuss
  • 通讯作者:
    Michael Preuss

Michael Preuss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Preuss', 18)}}的其他基金

MIDAS - Mechanistic understanding of Irradiation Damage in fuel Assemblies
MIDAS - 燃料组件中辐照损伤的机理理解
  • 批准号:
    EP/S01702X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Silicide-Strengthened Steel - A New Method of Wear Protection within Nuclear Environments
硅化物强化钢——核环境中磨损防护的新方法
  • 批准号:
    EP/R000956/1
  • 财政年份:
    2017
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation
高剂量中子辐照的高保真离子束模拟
  • 批准号:
    EP/L025981/1
  • 财政年份:
    2014
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Dislocation-Microstructure Interaction at a Crack Tip - In Search of a Driving Force for Short Crack Growth
裂纹尖端的位错-微观结构相互作用 - 寻找短裂纹扩展的驱动力
  • 批准号:
    EP/M000737/1
  • 财政年份:
    2014
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Fuel
工程锆合金包壳改进可提高轻水堆燃料的事故耐受性
  • 批准号:
    EP/K034650/1
  • 财政年份:
    2013
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
New Nuclear Manufacturing (NNUMAN)
新核制造(NNUMAN)
  • 批准号:
    EP/J021172/1
  • 财政年份:
    2012
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Enhancing nuclear fuel efficiency through improved understanding of irradiation damage in zirconium cladding
通过加深对锆包壳辐照损伤的了解来提高核燃料效率
  • 批准号:
    EP/I005420/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Fellowship
Irradiation Effects on Flow Localisation in Zirconium Alloys
辐照对锆合金流动局域化的影响
  • 批准号:
    EP/I012346/1
  • 财政年份:
    2011
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Performance and Reliability of Metallic Materials for Nuclear Fission Power Generation
核裂变发电用金属材料的性能和可靠性
  • 批准号:
    EP/I003290/1
  • 财政年份:
    2010
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Strain mapping of individual grains using diffraction contrast tomography
使用衍射对比断层扫描技术绘制单个晶粒的应变图
  • 批准号:
    EP/F020910/1
  • 财政年份:
    2008
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant

相似国自然基金

用于核反应堆pin-by-pin模拟的高精度高压缩率数据库投影计算方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于核反应堆pin-by-pin模拟的高精度高压缩率数据库投影计算方法研究
  • 批准号:
    12205283
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于全局快速寻优与高分辨率模拟的反应堆整体屏蔽设计量化决策方法研究
  • 批准号:
    12175101
  • 批准年份:
    2021
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
下一代聚变托卡马克反应堆的先进偏滤器模拟研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    15 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于多物理耦合及降阶模拟的流化床核反应堆动力学特性研究
  • 批准号:
    51876011
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Efficient Synthesis of Biodiesel Fuel through Simultaneous Multiple Reactions Using a Simulated Moving Bed Reactor
使用模拟移动床反应器通过同时多个反应高效合成生物柴油燃料
  • 批准号:
    18K04829
  • 财政年份:
    2018
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of Hyper Flow Reactor Simulated Various Hydrothermal Environments in the Hadean Earth and Saturn II Enceladus
超流反应堆的建造模拟了冥宙地球和土星二号土卫二的各种热液环境
  • 批准号:
    16K13913
  • 财政年份:
    2016
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
From Processing to Simulated In-Reactor Performance of Zr Cladding.
从锆熔壳的加工到模拟反应堆内性能。
  • 批准号:
    EP/M018105/1
  • 财政年份:
    2016
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Research Grant
Organic Synthesis in Simulated Submarine Hydrothermal Vent Environments by Using a Supercritical Water Flow-Reactor
使用超临界水流反应器在模拟海底热液喷口环境中进行有机合成
  • 批准号:
    11640488
  • 财政年份:
    1999
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the Simulated Moving-Bed Reactor Equipped with Membrane-Type Enzyme Reactors
膜式酶反应器模拟移动床反应器的研制
  • 批准号:
    09450291
  • 财政年份:
    1997
  • 资助金额:
    $ 62.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了