EPSRC Fellowship in Manufacturing: Collaborative Metrology Systems for High Value Manufacturing

EPSRC 制造业奖学金:高价值制造的协作计量系统

基本信息

  • 批准号:
    EP/L01498X/1
  • 负责人:
  • 金额:
    $ 156.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

To support the development of challenging, difficult to manufacture products, increased reliance is placed on techniques to allow accurate dimensional measurement of parts and components. New measurement systems are needed that provide data quickly with higher levels of accuracy and precision than is currently possible. Currently high accuracy measurements are made using dedicated expensive instrumentation in temperature controlled labs. The wide range of measurement challenges mean there is no single instrument available to suit all needs. In fact, the range of lab based instrument systems required to meet the measurement needs of industry continues to grow. It includes techniques ranging from contact measurements made using a mechanical probe, to non-contact measurements which use light, lasers, or X-ray based measurement methods. The main drawback of these systems is that they are usually slow to set-up, and significant time is required to take measurements. This means that although they are very accurate they are less useful for the control and improvement of challenging manufacturing processes, where data must be collected and analysed quickly. Improved measurement systems are required which provide higher speed measurements, at lower cost, without compromising accuracy. Currently two approaches address this need. One approach uses on machine sensors to provide high-speed measurements, while the other approach is to position instruments closer to the manufacturing environment to reduce the time required to transfer work to the measurement lab. Both approaches have obvious benefits as they provide faster data; however, they are also less accurate as a result of the unwanted disturbances experienced on the factory floor. These limitations result in a trade-off: the user can either have high accuracy, or high speed measurement, but not both at once. The research undertaken within this Fellowship will develop a new way of collecting and effectively processing critical measurement data. Instead of a reliance on high accuracy instruments, this approach will provide a new way of thinking with respect to how measurement systems are designed and implemented. The goal will be to allow different types of lower accuracy data to be combined in a beneficial way. For example, computer simulations of a machine, product, and process will be combined with sensors that monitor environmental conditions. In addition sensors used to take high speed measurements of parts during the manufacturing process itself will be used. Through a collaborative process these data will be combined to provide fast high quality data. To verify and further improve the system a small quantity of accurate feedback data from high accuracy instruments in temperature controlled labs will be used. In effect the approach will be to combine slow accurate data, with fast less reliable data, to produce enhanced accuracy fast measurements. For example, if a batch of high precision components must be produced, the components must also have their geometry verified and corrected if required. On machine sensors may be used to verify geometry, but accuracy is limited due to environmental effects such as temperature and humidity. To compensate for these errors a collaborative measurement system will initially make measurements using both on-machine sensors as well as off-machine lab instruments. It will blend these data sets in addition to data from on-machine environmental monitoring sensors, and computer simulations to correct for errors and therefor enhance the accuracy of the measurements. The system will automatically adapt to changing environmental conditions by triggering the need for more lab-based data which will allow an improved error correction to be made. In this way the system will adapt and optimise the measurement process to suit the current manufacturing conditions.
为了支持具有挑战性,难以生产产品的发展,对技术的依赖提高,以允许对零件和组件进行准确的维度测量。需要新的测量系统,以比目前可能的更高的准确性和准确性来快速提供数据。目前,使用温度控制的实验室中使用专用昂贵的仪器进行高精度测量。各种各样的测量挑战意味着没有可满足所有需求的单一仪器。实际上,满足行业测量需求所需的基于实验室的仪器系统范围不断增长。它包括从使用机械探针进行的接触测量到使用光,激光器或基于X射线测量方法的非接触式测量的技术。这些系统的主要缺点是它们的设置通常很慢,并且需要大量时间进行测量。这意味着,尽管它们非常准确,但它们对于控制和改善具有挑战性的制造过程的有用程度较小,在这些过程中必须快速收集和分析数据。需要改进的测量系统,以较低的成本提供更高的速度测量,而不会损害准确性。目前有两种方法满足了这一需求。一种方法在机器传感器上用于提供高速测量,而另一种方法是将工具放置在更靠近制造环境的仪器中,以减少将工作转移到测量实验室所需的时间。两种方法都具有明显的好处,因为它们提供了更快的数据。但是,由于工厂地板上经历的不良干扰,它们的准确性也不太准确。这些局限性导致了权衡:用户可以具有很高的精度或高速测量,但不能同时进行。在该奖学金中进行的研究将开发一种收集和有效处理关键测量数据的新方法。这种方法不再依赖高精度工具,而是为如何设计和实施测量系统提供一种新的思维方式。目标是允许以有益的方式组合不同类型的较低精度数据。例如,机器,产品和过程的计算机模拟将与监视环境条件的传感器结合使用。此外,将使用用于在制造过程中对零件进行高速测量的传感器本身。通过协作过程,这些数据将合并以提供快速的高质量数据。为了验证和进一步改善系统,将使用来自温度控制的实验室中高精度工具的少量准确反馈数据。实际上,该方法将是将缓慢的精确数据与快速可靠的数据相结合,以产生增强的准确性快速测量。例如,如果必须产生一批高精度组件,则该组件还必须在需要时验证并校正其几何形状。在机器传感器上可以用来验证几何形状,但是由于温度和湿度等环境效应,准确性受到限制。为了弥补这些错误,协作测量系统最初将使用机上传感器和电机外实验室仪器进行测量。除了来自机上环境监视传感器的数据以及计算机模拟以纠正错误并增强测量的准确性之外,它还将混合这些数据集。该系统将通过触发更多基于实验室的数据的需求来自动适应不断变化的环境条件,这将允许进行改进的误差校正。这样,系统将适应并优化适合当前制造条件的测量过程。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lensless fiber-deployed low-coherence interferometer for in-situ measurements in nonideal environments
  • DOI:
    10.1117/1.oe.59.1.014113
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Hovell, Tom;Matharu, Ranveer S.;Kinnell, Peter
  • 通讯作者:
    Kinnell, Peter
From Light to Displacement: A Design Framework for Optimising Spectral-Domain Low-Coherence Interferometric Sensors for In Situ Measurement
  • DOI:
    10.3390/app10238590
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Hovell, Tom;Petzing, Jon;Kinnell, Peter
  • 通讯作者:
    Kinnell, Peter
Autonomous metrology for robot mounted 3D vision systems
  • DOI:
    10.1016/j.cirp.2017.04.069
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    P. Kinnell;T. Rymer;J. Hodgson;L. Justham;M. Jackson
  • 通讯作者:
    P. Kinnell;T. Rymer;J. Hodgson;L. Justham;M. Jackson
Pragmatic Micrometre to Millimetre Calibration Using Multiple Methods for Low-Coherence Interferometer in Embedded Metrology Applications.
  • DOI:
    10.3390/s21155101
  • 发表时间:
    2021-07-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hovell T;Petzing J;Justham L;Kinnell P
  • 通讯作者:
    Kinnell P
Integration of a scanning interferometer into a robotic inspection system for factory deployment
将扫描干涉仪集成到机器人检测系统中以进行工厂部署
  • DOI:
    10.1109/sii46433.2020.9025972
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Biro I
  • 通讯作者:
    Biro I
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Kinnell其他文献

Technical and System Requirements for Industrial Robot-as-a-Service (IRaaS)
  • DOI:
    10.1016/j.procir.2024.10.170
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammed M. Mabkhot;Myles Flanagan;Masoud S. Bahraini;Yalei Yu;Cong Sun;Matthew Coombes;Peter Kinnell;Wen-Hua Chen;Michael Henshaw;Niels Lohse
  • 通讯作者:
    Niels Lohse

Peter Kinnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Kinnell', 18)}}的其他基金

First Time Concrete: Integrated digital models for right-first-time 3D concrete printing and milling
首次混凝土:首次成功的 3D 混凝土打印和铣削集成数字模型
  • 批准号:
    EP/X02430X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 156.03万
  • 项目类别:
    Research Grant
In Jet Interferometry for Ultra Precise Electrolyte Jet Machining
用于超精密电解质喷射加工的喷射干涉测量
  • 批准号:
    EP/M020746/1
  • 财政年份:
    2015
  • 资助金额:
    $ 156.03万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

1/2 Drug Development and Capacity Building: A UCR/CoH-CCC Partnership
1/2 药物开发和能力建设:UCR/CoH-CCC 合作伙伴关系
  • 批准号:
    10762157
  • 财政年份:
    2023
  • 资助金额:
    $ 156.03万
  • 项目类别:
2/2 Drug Development and Capacity Building: A UCR/CoH-CCC Partnership
2/2 药物开发和能力建设:UCR/CoH-CCC 合作伙伴关系
  • 批准号:
    10762287
  • 财政年份:
    2023
  • 资助金额:
    $ 156.03万
  • 项目类别:
Contraception development research center to advance a novel intravaginal ring as a non-hormonal multipurpose prevention technology
避孕开发研究中心将开发新型阴道环作为非激素多用途预防技术
  • 批准号:
    10700065
  • 财政年份:
    2021
  • 资助金额:
    $ 156.03万
  • 项目类别:
1/2 Drug Development and Capacity Building: A UCR/CoH-CCC Partnership
1/2 药物开发和能力建设:UCR/CoH-CCC 合作伙伴关系
  • 批准号:
    10006525
  • 财政年份:
    2019
  • 资助金额:
    $ 156.03万
  • 项目类别:
1/2 Drug Development and Capacity Building: A UCR/CoH-CCC Partnership
1/2 药物开发和能力建设:UCR/CoH-CCC 合作伙伴关系
  • 批准号:
    10246842
  • 财政年份:
    2019
  • 资助金额:
    $ 156.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了