First Time Concrete: Integrated digital models for right-first-time 3D concrete printing and milling

首次混凝土:首次成功的 3D 混凝土打印和铣削集成数字模型

基本信息

  • 批准号:
    EP/X02430X/1
  • 负责人:
  • 金额:
    $ 129.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Concrete is one of the most widely used materials in the world. For many years traditional processes have been used to make concrete parts. However, over the last decade, 3D printing has revolutionised the way concrete parts are made. Complex concrete parts can now be created with no formwork or mould tooling. This is important as it removes the time and expense associated with making the moulds, but critically it also offers the potential to create parts that are structurally optimised to maintain strength with less material. This brings benefits in terms of cost but also it represents a significant environmental benefit as less material is needed, so carbon dioxide equivalent emissions are also reduced. The process is still in development though, and current 3D printing processes result in geometric forms and surface finishes that are not always desirable, and part accuracy that is too low for many applications. To address this, the 3D printing process can be followed immediately by a subtractive process that mills the surface to trim off unwanted material. This improves both accuracy and surface finish. By using a two-stage process of deposition followed by milling, it is possible to create high-quality parts, with intricate features and well-controlled surface finishes. The problem is that for each new part manufactured in this way, many iterative process development trials are required to perfect the deposition and milling strategy. This is time-consuming and wasteful, and it is a barrier to the uptake of the technology. The First Time Concrete (FT-Concrete) project will address this problem by creating new digital process and material models that can be used to help design printing and milling strategies without the need for physical trials. To do this, these models will be coupled within a digital workflow that enables optimised process design of both the material deposition and the milling process together. So, for a given part the feasibility of defect free manufacturing can be assessed, and the part or process design can be optimised, to ensure parts are printed right first time. This will be a two-way process, where printing sequence, speed and geometry will be optimised to suit milling requirements and vice versa.To achieve this the FT-Concrete project will investigate new time-dependent material properties models that can predict the curing state and optimal milling window and milling parameters for every position in a part. These must account for the variability of the mix, ambient conditions, printing sequence and the shape of the printed parts. New complementary process models for milling 3D printed concrete in a 'green' state will also be created. These must be able to cope with the highly variable material properties inherent to curing concrete. Finally, these new models will be integrated within a digital design system that will reduce, or potentially remove, the need for physical prototype parts. The new digital process and material models that we envisage, together with a digitally coupled design process will have significant commercial value; as they have the potentially to reduce process development time, material waste, and cost. We believe this could unlock 3D concrete printing to a wide range of new applications, boosting the uptake of the technology. Enabling structures and geometries that are currently impossible to produce. To pave the way for the uptake of these models, our aim is to integrate them within freely available, opensource, 3D printing design software. In addition, we will work with industrial partners to demonstrate the potential of the digital approach through industrially driven case studies.
混凝土是世界上使用最广泛的材料之一。多年来,传统过程一直被用来制作混凝土零件。但是,在过去的十年中,3D打印彻底改变了混凝土零件的方式。现在可以在没有模板或模具工具的情况下创建复杂的混凝土零件。这很重要,因为它可以消除与制造模具相关的时间和费用,但至关重要的是,它也提供了创建在结构上优化的零件以使用材料较少的实力的零件的潜力。这在成本方面带来了好处,但由于需要较少的材料,因此它代表了重要的环境收益,因此二氧化碳等效排放也减少了。但是,该过程仍在开发中,当前的3D打印过程导致几何形式和表面表面表面表面并不总是理想的,并且部分精度对于许多应用而言太低。为了解决这个问题,可以立即进行3D打印过程,然后进行减法过程,该过程将表面铣削以修剪不需要的材料。这提高了准确性和表面效果。通过使用两个阶段的沉积过程,然后进行铣削,可以创建高质量的零件,具有复杂的特征和控制良好的表面饰面。问题在于,对于以这种方式制造的每个新部分,需要许多迭代过程开发试验才能完善沉积和铣削策略。这是耗时且浪费的,这是对技术采用的障碍。首次混凝土(FT-Concrete)项目将通过创建新的数字过程和材料模型来解决此问题,这些过程可用于帮助设计印刷和铣削策略,而无需进行物理试验。为此,这些模型将耦合在数字工作流程中,该数字工作流程可以将材料沉积和铣削过程的优化过程设计在一起。因此,对于给定的部分,可以评估无缺陷制造的可行性,并且可以优化零件或过程设计,以确保首次正确打印零件。这将是一个双向过程,在此过程中,打印顺序,速度和几何形状将被优化以适合铣削要求,反之亦然。为了实现这一目标,FT - 混凝土项目将调查可以预测固化状态的新的与时间相关的材料属性模型以及零件中每个位置的最佳铣削窗口和铣削参数。这些必须说明混合物,环境条件,打印顺序和印刷零件的形状的可变性。还将创建用于在“绿色”状态下铣削3D打印混凝土的新的互补过程模型。这些必须能够应对固化混凝土固有的高度可变材料特性。最后,这些新模型将集成到数字设计系统中,该系统将减少或有可能消除对物理原型零件的需求。我们设想的新数字过程和材料模型以及数字耦合的设计过程将具有显着的商业价值。因为它们有可能减少过程开发时间,物质浪费和成本。我们认为,这可以将3D混凝土打印解锁到各种新应用程序,从而提高技术的吸收。实现目前无法生产的结构和几何形状。为了为这些模型铺平道路,我们的目的是将它们集成到自由使用的3D打印设计软件中。此外,我们将与工业合作伙伴合作,通过工业驱动的案例研究来证明数字方法的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Kinnell其他文献

Peter Kinnell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Kinnell', 18)}}的其他基金

In Jet Interferometry for Ultra Precise Electrolyte Jet Machining
用于超精密电解质喷射加工的喷射干涉测量
  • 批准号:
    EP/M020746/1
  • 财政年份:
    2015
  • 资助金额:
    $ 129.86万
  • 项目类别:
    Research Grant
EPSRC Fellowship in Manufacturing: Collaborative Metrology Systems for High Value Manufacturing
EPSRC 制造业奖学金:高价值制造的协作计量系统
  • 批准号:
    EP/L01498X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 129.86万
  • 项目类别:
    Fellowship

相似国自然基金

微腔耗散克尔孤子时间抖动抑制技术研究
  • 批准号:
    62375043
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
发展方程的时间最优控制的精细性质
  • 批准号:
    12371450
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
导数非线性耗散薛定谔方程解的长时间行为
  • 批准号:
    12361051
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
鳗草(Zostera marina)开花时间的分子遗传机制研究
  • 批准号:
    42306135
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The interaction of concrete vs. abstract message types and time of day on prosocial behaviors.
具体与抽象消息类型以及一天中的时间对亲社会行为的相互作用。
  • 批准号:
    24K16470
  • 财政年份:
    2024
  • 资助金额:
    $ 129.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of prediction system for time-dependent performance of steel-concrete hybrid structure after intervention
干预后钢-混凝土混合结构随时间变化的性能预测系统的开发
  • 批准号:
    23H01490
  • 财政年份:
    2023
  • 资助金额:
    $ 129.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on the automatic construction system for night time using self-compacting concrete with vibration for productivity improvement
提高生产率的自密实混凝土夜间自动施工系统研究
  • 批准号:
    22K04264
  • 财政年份:
    2022
  • 资助金额:
    $ 129.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of household concrete floors on child health
家用混凝土地板对儿童健康的影响
  • 批准号:
    10419834
  • 财政年份:
    2022
  • 资助金额:
    $ 129.86万
  • 项目类别:
Effects of household concrete floors on child health
家用混凝土地板对儿童健康的影响
  • 批准号:
    10670846
  • 财政年份:
    2022
  • 资助金额:
    $ 129.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了