Building Large Quantum States out of Light
用光构建大量子态
基本信息
- 批准号:EP/K034480/1
- 负责人:
- 金额:$ 446.5万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We aim to build the world's biggest quantum photonic network, in which up to twenty photons, elementary particles of light, are connected to produce a large, controllable quantum system. This new tool will open up important realms of physics that have been too complex to study conventionally, such as biological energy transport and high-temperature superconductivity. Since photons are used to transport information, the network will also form a platform for revolutionary new quantum technologies like ultra-precise sensing and guaranteed-secure communication across the globe. To achieve such a large quantum system, we will introduce new techniques that fundamentally change the scalability of photonics. This will lay the ground for even larger networks in the future, establishing the UK as a leader in the nascent quantum technology industry.We have known for over a hundred years that atoms and molecules don't move according to Newton's laws. Instead, they obey the laws of quantum mechanics. These laws are strange but they explain how chemical bonds form and why silicon chips can make computers. These insights drove a profound technological revolution in the 20th century, spanning extraordinary advances in medicine, telecoms, and computing. It is now clear that our current knowledge of quantum systems is just the tip of the iceberg. While we can understand quantum effects between just two particles exactly, or between many atoms in an approximate way, as is the case for a semiconductor transistor, large objects composed of many particles cannot be analysed in detail. They are too complicated, and in fact beyond a few atoms, they cannot even be simulated with a supercomputer. The problem is that quantum systems are fuzzy, in a sense, so each particle is a distribution, not a single point. To describe many particles requires distributions of distributions of distributions and so on. This explosion in complexity means that many interesting systems in nature - in biology and medicine, particle physics and materials science - have so far been largely closed to analysis. The only way to study complex quantum systems in detail is to build a machine that can create them in a tailored, controllable way, so that we can build models of the real systems we want to study.Over the past two decades, a new science of quantum information has developed. In addition to their application to problems in the natural sciences, it has been shown that large controllable quantum systems can underpin a host of transformative new technologies, including the possibility of quantum computers that are exponentially faster than today's best computers. Perhaps surprisingly, one of the most advanced approaches to quantum computation involves photons instead of atoms. Photons can easily be transported by optical fibres, which are a mature technology used for telecoms and the internet, and they experience almost no noise. Because of these advantages, optical quantum cryptography over short distances is already commercially available.To go further and realise the most ambitious goals of quantum information science, and to open up the investigation of complex quantum systems, many photons must be connected and precisely manipulated. We aim to meet this challenge by leveraging advanced fabrication methods developed for the modern telecoms industry to build a large-scale controllable quantum photonic network, at the level of around twenty photons. In particular, we will use silica integrated optics -- circuits for light written on small glass chips -- to connect photons with minimal losses. These will be joined to superconducting detectors that count photons with high efficiency, and novel quantum memories that can store photons and synchronise the network. Combining quantum memories with these highly efficient technologies will enable the network to operate with at an unprecedented scale, giving access to new physics and new technologies.
我们旨在建立世界上最大的量子光子网络,其中最多20个光子(光的光子颗粒)连接起来,以产生一个大型,可控的量子系统。这个新工具将开放重要的物理学领域,这些物理学太复杂而无法进行传统研究,例如生物能传输和高温超导性。由于光子用于传输信息,因此该网络还将为革命性的新量子技术构成一个平台,例如超出精确的感应和全球保证的安全通信。为了实现如此大的量子系统,我们将介绍从根本上改变光子学的可伸缩性的新技术。这将在将来为更大的网络奠定基础,将英国建立为新生量子技术行业的领导者。我们已经知道了一百多年来,根据牛顿法律,原子和分子不会移动。相反,他们遵守量子力学定律。这些定律很奇怪,但它们解释了化学键是如何形成的,以及为什么硅芯片可以制造计算机。这些见解在20世纪推动了一场深刻的技术革命,涵盖了医学,电信和计算方面的非凡进步。现在很明显,我们目前对量子系统的了解只是冰山一角。尽管我们可以完全理解两个粒子之间的量子效应,或者以近似方式理解许多原子之间的量子效应,而半导体晶体管也是如此,但不能详细分析由许多颗粒组成的大物体。它们太复杂了,实际上超出了几个原子,甚至无法使用超级计算机模拟它们。问题在于,量子系统在某种意义上是模糊的,因此每个粒子都是分布,而不是一个点。为了描述许多粒子需要分布分布的分布等。复杂性的这种爆炸意味着,到目前为止,生物学和医学,粒子物理学和材料科学的许多有趣的系统在很大程度上已经封闭了分析。详细研究复杂量子系统的唯一方法是构建可以以量身定制,可控制的方式创建它们的机器,以便我们可以构建要研究的真实系统的模型。在过去的二十年中,开发了一项新的量子信息科学。除了在自然科学中的问题上应用它们外,还表明,大型可控量子系统还可以支持许多变革性的新技术,包括比当今最好的计算机更快的量子计算机的可能性。也许令人惊讶的是,量子计算最先进的方法之一涉及光子而不是原子。光纤可以轻松运输光纤,这是一种用于电信和互联网的成熟技术,它们几乎没有噪音。由于这些优点,已经在短距离上获得了光学量子密码学,因此可以进一步实现量子信息科学的最雄心勃勃的目标,并打开对复杂量子系统的研究,必须连接许多光子并精确操纵。我们的目标是通过利用为现代电信行业开发的先进制造方法来应对这一挑战,以在约20个光子的水平上建立一个大规模可控的量子光子网络。特别是,我们将使用二氧化硅集成的光学元件(用于在小玻璃芯片上写的光的电路)与最小损失的光子连接。这些将连接到以高效率计数光子的超导检测器,以及可以存储光子并同步网络的新型量子记忆。将量子记忆与这些高效的技术相结合将使网络能够以前所未有的规模运行,从而访问新的物理和新技术。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced delegated computing using coherence
- DOI:10.1103/physreva.93.032339
- 发表时间:2015-01
- 期刊:
- 影响因子:2.9
- 作者:Stefanie Barz;V. Dunjko;Florian Schlederer;M. Moore;E. Kashefi;I. Walmsley
- 通讯作者:Stefanie Barz;V. Dunjko;Florian Schlederer;M. Moore;E. Kashefi;I. Walmsley
Directly comparing entanglement-enhancing non-Gaussian operations
- DOI:10.1088/1367-2630/17/2/023038
- 发表时间:2015-02
- 期刊:
- 影响因子:3.3
- 作者:T. Bartley;I. Walmsley
- 通讯作者:T. Bartley;I. Walmsley
Qubit-Programmable Operations on Quantum Light Fields.
- DOI:10.1038/srep15125
- 发表时间:2015-10-15
- 期刊:
- 影响因子:4.6
- 作者:Barbieri M;Spagnolo N;Ferreyrol F;Blandino R;Smith BJ;Tualle-Brouri R
- 通讯作者:Tualle-Brouri R
Modelling non-markovian quantum processes with recurrent neural networks
- DOI:10.1088/1367-2630/aaf749
- 发表时间:2018-08
- 期刊:
- 影响因子:3.3
- 作者:L. Banchi;Edward Grant;Andrea Rocchetto;S. Severini
- 通讯作者:L. Banchi;Edward Grant;Andrea Rocchetto;S. Severini
Multiphoton Tomography with Linear Optics and Photon Counting.
- DOI:10.1103/physrevlett.121.250402
- 发表时间:2018-06
- 期刊:
- 影响因子:8.6
- 作者:L. Banchi;W. Kolthammer;M. S. Kim-M. S.-Kim-2254361765
- 通讯作者:L. Banchi;W. Kolthammer;M. S. Kim-M. S.-Kim-2254361765
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Walmsley其他文献
Ian Walmsley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Walmsley', 18)}}的其他基金
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
- 批准号:
EP/Y029631/1 - 财政年份:2024
- 资助金额:
$ 446.5万 - 项目类别:
Fellowship
QuICHE: Quantum information and communication with high-dimensional encoding
QuICHE:高维编码的量子信息与通信
- 批准号:
EP/T027177/1 - 财政年份:2020
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
ESCHER: Establishing Supply Chains for Emergent Quantum Computers
埃舍尔:为新兴量子计算机建立供应链
- 批准号:
EP/R041865/1 - 财政年份:2018
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
BBSRC IAA University of Oxford
BBSRC IAA 牛津大学
- 批准号:
BB/S50676X/1 - 财政年份:2018
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
University of Oxford: experimental equipment upgrade
牛津大学:实验设备升级
- 批准号:
EP/M02833X/1 - 财政年份:2015
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
The DiPOLE Laser on the Helmholtz Beamline at XFEL
XFEL 亥姆霍兹光束线上的偶极激光器
- 批准号:
EP/M000508/1 - 财政年份:2015
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
UK Quantum Technology Hub: NQIT - Networked Quantum Information Technologies
英国量子技术中心:NQIT - 网络量子信息技术
- 批准号:
EP/M013243/1 - 财政年份:2014
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
Small items of research equipment at the University of Oxford
牛津大学的小型研究设备
- 批准号:
EP/K031503/1 - 财政年份:2012
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
Towards Real Applications in Broadband Quantum Memories
走向宽带量子存储器的实际应用
- 批准号:
EP/J000051/1 - 财政年份:2012
- 资助金额:
$ 446.5万 - 项目类别:
Research Grant
相似国自然基金
复杂大电网可靠性评估的量子计算理论及应用
- 批准号:52377089
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于大光学厚度及光晶格技术的高效率长寿命量子存储器
- 批准号:62305104
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
大损耗下光-原子混合非线性干涉仪量子增强测量的研究
- 批准号:12304391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
交替量子阱周期大孔异质结构光催化材料的设计与机理研究
- 批准号:52362033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
石墨烯量子点嵌入DNA大沟抑制肿瘤复发与转移的效应及机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
数値的に厳密なシミュレーションと非平衡最大仕事に基づく非平衡量子熱力学の研究
基于数值严格模拟和非平衡最大功的非平衡量子热力学研究
- 批准号:
24KJ1373 - 财政年份:2024
- 资助金额:
$ 446.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
色分子動力学の長時間大規模計算による高密度熱力学的諸量の導出
通过长期大规模的颜色分子动力学计算推导高密度热力学量
- 批准号:
24K07054 - 财政年份:2024
- 资助金额:
$ 446.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
電子の超高速ダイナミクス診断技術を駆使した放電活性種の選択的・大量生成法の創成
使用超快电子动力学诊断技术创建选择性和大量产生放电活性物质的方法
- 批准号:
24K00863 - 财政年份:2024
- 资助金额:
$ 446.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
タングステン粒子の炉内大域的輸送の理解とそれによる堆積層の水素同位体蓄積量の評価
了解反应堆内钨粒子的整体传输,并根据这种了解评估沉积层中积累的氢同位素的量
- 批准号:
24K06995 - 财政年份:2024
- 资助金额:
$ 446.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 446.5万 - 项目类别: