Towards Real Applications in Broadband Quantum Memories

走向宽带量子存储器的实际应用

基本信息

  • 批准号:
    EP/J000051/1
  • 负责人:
  • 金额:
    $ 112.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Imagine a banknote that cannot be forged, because the serial number is scrambled every time someone tries to read it. But if you are the banker, you can read it. Sounds like Harry Potter? Imagine a computer that predicts how drugs will behave by simulating all possible chemical reactions at once! This is not an idea from Phillip Pullman's fantasy of parallel universes. Real technologies like this are just around the corner.This is the fascinating, counter-intuitive world of quantum physics. Huge advances in communications and computing technology over the last several decades have made this the information age and changed the way people live and interact even more drastically than did the industrial revolution. These advances have piggy-backed on the development of devices such as semiconductor transistors and lasers, devices which wouldn't be possible without the weird properties of quantum physics.But although modern computers have far-outstripped the early technology of punch cards and vacuum tube valves, at an underlying conceptual level, they still use exactly the same type of information - strings of 0s and 1s called bits. Quantum physics will allow us go far beyond this into the strange world of quantum information, where the "quantum bits" can be both 0 and 1 simultaneously! Computers that could work with this sort of information would be exponentially faster at performing difficult simulations or cracking codes. And communicating using quantum information can be made "eavesdropper proof" - perfectly secure.Over the past ten years, an enormous research effort has brought these extraordinary technologies from abstract ideas to small-scale experiments. One of the most promising ways to build a quantum computer is based on single particles of light, called photons, which can be sent over long distances in optical fibres and manipulated with ordinary lenses and mirrors. But like normal computers, quantum computers need memories to be able to synchronise different parts of a computation by storing the quantum information until it is needed. So to build a photonic quantum computer, we also need to have a quantum memory that can store single photons. What makes this difficult is that these special memories need to be able to store the fragile quantum information without destroying or even "looking" at it (measuring it).In this project, we will develop a quantum memory for photons which can store short pulses for long times with high efficiency and very low noise. To do this, we will use a "Raman memory", an approach pioneered in our group which uses a strong laser pulse to cause the photon to be absorbed by a sample of atoms which is normally transparent. Because the absorption is created by the strong laser (which is not absorbed), there is no noise from excited atoms, and the atoms don't need to be specially prepared by cooling them or trapping them.The simplicity of our design will allow us to build the first practically feasible memory, which would even potentially be capable of operating in isolated, harsh environments, such as on the ocean floor. This will also allow us to perform novel photonics experiments which are too complex to operate without the memory. We will also develop a miniaturized memory that could be mass-produced and integrated with existing telecoms fibres. Such a device will do for quantum photonics what the transistor did for conventional electronics.Quantum memories will open the way to a new era of quantum enabled devices, with super-fast computers, perfectly secure communications and ultra-precise measurements. Our research is the key to bringing these truly magical technologies to life.
想象一下一个无法伪造的钞票,因为每当有人试图阅读它时,序列号都会扰乱。但是,如果您是银行家,则可以阅读。听起来像哈利·波特?想象一下,一台计算机可以通过一次模拟所有可能的化学反应来预测药物如何行为!这不是菲利普·普尔曼(Phillip Pullman)的平行宇宙幻想的想法。这样的真实技术就在拐角处。这是量子物理学的迷人,违反直觉的世界。在过去的几十年中,通信和计算技术方面的巨大进步使这一信息变化了,并改变了人们的生活和互动方式,而不是工业革命。 These advances have piggy-backed on the development of devices such as semiconductor transistors and lasers, devices which wouldn't be possible without the weird properties of quantum physics.But although modern computers have far-outstripped the early technology of punch cards and vacuum tube valves, at an underlying conceptual level, they still use exactly the same type of information - strings of 0s and 1s called bits.量子物理学将使我们远远超越了量子信息的奇怪世界,在那里“量子位”可以同时使用0和1!可以使用这种信息的计算机在执行困难模拟或破裂代码方面的成倍增长。并且可以使用量子信息进行沟通可以做出“窃听的证明” - 完全安全。在过去的十年中,一项巨大的研究工作使这些非凡的技术从抽象的思想到小规模实验。构建量子计算机的最有前途的方法之一是基于单个光颗粒,称为光子,可以在光纤中长距离发送,并用普通的镜头和镜子操纵。但是,像普通计算机一样,量子计算机需要记忆,才能通过存储量子信息直到需要来同步计算的不同部分。因此,要构建一台光子量子计算机,我们还需要拥有一个可以存储单个光子的量子内存。使这个困难的原因是,这些特殊的记忆需要能够存储脆弱的量子信息而不会破坏甚至“看”它(测量它)。在这个项目中,我们将为光子开发一个量子记忆,可以长时间以高效率和非常低的噪声存储短时间的短脉冲。为此,我们将使用“拉曼记忆”,这是我们组中使用强的激光脉冲在我们的组中率先导致光子被通常透明的原子样品吸收的方法。由于吸收是由强激光(未被吸收的)创建的,因此没有兴奋的原子的噪音,并且原子不需要通过冷却或捕获它们来专门制备。我们的设计的简单性将使我们能够建立第一个实际的可行记忆,甚至有可能在孤立的,Harsh的环境中运行,例如在海洋地面上。这也将使我们能够执行新颖的光子学实验,这些实验太复杂了,无法在没有内存的情况下进行操作。我们还将开发一种微型记忆,可以与现有电信纤维进行大规模生产并集成。这样的设备将对量子光子学进行操作。晶体管对常规电子设备所做的一切。QuantumMemories将为启用量子设备的新时代开辟道路,具有超快速的计算机,完美的安全通信和超级精确的测量。我们的研究是使这些真正的神奇技术栩栩如生的关键。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compact entanglement distillery using realistic quantum memories
使用真实量子存储器的紧凑型纠缠蒸馏厂
  • DOI:
    10.1103/physreva.88.042312
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Chakhmakhchyan L
  • 通讯作者:
    Chakhmakhchyan L
High-fidelity polarization storage in a gigahertz bandwidth quantum memory
Two-way interconversion of millimeter-wave and optical fields in Rydberg gases
  • DOI:
    10.1088/1367-2630/18/9/093030
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    M. Kiffner;A. Feizpour;K. Kaczmarek;D. Jaksch;J. Nunn
  • 通讯作者:
    M. Kiffner;A. Feizpour;K. Kaczmarek;D. Jaksch;J. Nunn
High-speed noise-free optical quantum memory
  • DOI:
    10.1103/physreva.97.042316
  • 发表时间:
    2018-04-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Kaczmarek, K. T.;Ledingham, P. M.;Walmsley, I. A.
  • 通讯作者:
    Walmsley, I. A.
Compact continuous-variable entanglement distillation.
紧凑型连续可变纠缠蒸馏。
  • DOI:
    10.1103/physrevlett.108.060502
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Datta A
  • 通讯作者:
    Datta A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Walmsley其他文献

Ian Walmsley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Walmsley', 18)}}的其他基金

REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
  • 批准号:
    EP/Y029631/1
  • 财政年份:
    2024
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Fellowship
QuICHE: Quantum information and communication with high-dimensional encoding
QuICHE:高维编码的量子信息与通信
  • 批准号:
    EP/T027177/1
  • 财政年份:
    2020
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Research Grant
ESCHER: Establishing Supply Chains for Emergent Quantum Computers
埃舍尔:为新兴量子计算机建立供应链
  • 批准号:
    EP/R041865/1
  • 财政年份:
    2018
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Research Grant
BBSRC IAA University of Oxford
BBSRC IAA 牛津大学
  • 批准号:
    BB/S50676X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Research Grant
University of Oxford: experimental equipment upgrade
牛津大学:实验设备升级
  • 批准号:
    EP/M02833X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Research Grant
The DiPOLE Laser on the Helmholtz Beamline at XFEL
XFEL 亥姆霍兹光束线上的偶极激光器
  • 批准号:
    EP/M000508/1
  • 财政年份:
    2015
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Research Grant
UK Quantum Technology Hub: NQIT - Networked Quantum Information Technologies
英国量子技术中心:NQIT - 网络量子信息技术
  • 批准号:
    EP/M013243/1
  • 财政年份:
    2014
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Research Grant
Building Large Quantum States out of Light
用光构建大量子态
  • 批准号:
    EP/K034480/1
  • 财政年份:
    2013
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Research Grant
Small items of research equipment at the University of Oxford
牛津大学的小型研究设备
  • 批准号:
    EP/K031503/1
  • 财政年份:
    2012
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Research Grant
2010 Grant Balance Oxford
2010年牛津大学补助金余额
  • 批准号:
    EP/J016322/1
  • 财政年份:
    2011
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Research Grant

相似国自然基金

协同无人机与背包激光雷达的阔叶林真实叶面积指数反演
  • 批准号:
    42371382
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
真实非受控日常场景下的远程心脏健康监测
  • 批准号:
    62311530046
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
面向真实场景的高效盲图像超分辨率方法研究
  • 批准号:
    62302309
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结合数据特性分析的真实场景行人再识别技术研究
  • 批准号:
    62301346
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于真实道路的机动车CO2排放因子模型优化与应用研究
  • 批准号:
    42303015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NSF-BSF: NeTS: Small: Making BGP work for real-time interactive applications
NSF-BSF:NeTS:小型:使 BGP 适用于实时交互式应用程序
  • 批准号:
    2344761
  • 财政年份:
    2024
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Standard Grant
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
  • 批准号:
    EP/Y029631/1
  • 财政年份:
    2024
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Fellowship
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2341183
  • 财政年份:
    2023
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Standard Grant
Learning Methods and Applications for Real-World Object Detection
现实世界物体检测的学习方法和应用
  • 批准号:
    23K16896
  • 财政年份:
    2023
  • 资助金额:
    $ 112.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了