Using Machine Learning to Identify Noninvasive Motion-Based Biomarkers of Cardiac Function

使用机器学习识别心脏功能的无创基于运动的生物标志物

基本信息

  • 批准号:
    EP/K030310/1
  • 负责人:
  • 金额:
    $ 36.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Cardiovascular disease is the number one cause of death globally and represents a huge burden on the healthcare systems of the world. Diagnosis and planning of treatment for cardiovascular disease is often difficult and sometimes requires an invasive procedure which can itself be risky for the patient. Therefore, there is a lot of interest in devising improved and noninvasive techniques for diagnosis and treatment planning.Cardiovascular disease affects the ability of the heart to pump blood around the body. This ability is affected because the motion of the heart walls has been changed by the disease process to make the pumping action less efficient. Diagnosis and treatment planning for cardiovascular disease typically involves the use of imaging scanners such as ultrasound or magnetic resonance in an effort to evaluate the heart's motion and isolate the source of the problem. However, still in many cardiovascular applications the success rate of diagnosis and treatment planning is poor and patients suffer as a result.The aim of this project is to use sophisticated imaging and motion analysis techniques to devise novel noninvasive biomarkers for cardiovascular disease. The project will use motion modelling techniques that have previously been applied to correct the 'problem' of motion, for example to reduce artefacts in acquired images where the organ being imaged was moving. These techniques will be adapted to analyse the nature of the motion and to extract clinically useful information from it. This motion-based information will be combined with other multimodal data, such as anatomical information, genetic information or clinical history, to produce comprehensive noninvasive biomarkers of cardiovascular function.We will focus on two clinical exemplar applications. First, selection of patients for cardiac resynchronisation therapy (CRT). CRT is commonly used to treat heart failure but 30% of patients do not respond to the treatment and therefore undergo the invasive and risky procedure unnecessarily. We aim to devise biomarkers that can distinguish between patients that will respond to CRT and those that will not. The second application is the investigation of the effect of genetic variation on cardiac motion patterns. A large number of cardiovascular diseases are inherited. In several of them, such as left ventricular hypertrophy, many people exhibit no detectable symptoms until heart failure develops. Therefore, there is significant interest in discovering the mechanisms behind these conditions. We aim to devise biomarkers that can help us to understand the link between genetics and heart failure. Such an understanding would have the potential to result in improved screening and diagnosis of patients at genetic risk of heart failure.The project is highly novel and has significant potential impact. As well as the two clinical exemplar applications mentioned above, if successful similar techniques could be applied to other cardiovascular diseases, resulting in improved diagnosis and treatment for a wide range of heart conditions.
心血管疾病是全球第一大死因,给世界医疗保健系统带来巨大负担。心血管疾病的诊断和治疗计划通常很困难,有时需要侵入性手术,这本身对患者来说可能是有风险的。因此,人们对设计用于诊断和治疗计划的改进的非侵入性技术非常感兴趣。心血管疾病影响心脏将血液泵送到全身的能力。这种能力受到影响,因为疾病过程改变了心壁的运动,导致泵血作用效率降低。心血管疾病的诊断和治疗计划通常涉及使用超声或磁共振等成像扫描仪来评估心脏运动并隔离问题根源。然而,在许多心血管应用中,诊断和治疗计划的成功率仍然很低,患者因此遭受痛苦。该项目的目的是使用复杂的成像和运动分析技术来设计用于心血管疾病的新型非侵入性生物标志物。该项目将使用先前用于纠正运动“问题”的运动建模技术,例如减少所采集图像中被成像器官移动时的伪影。这些技术将用于分析运动的性质并从中提取临床有用的信息。这种基于运动的信息将与其他多模态数据(例如解剖信息、遗传信息或临床病史)相结合,产生心血管功能的综合无创生物标志物。我们将重点关注两个临床范例应用。首先,选择患者进行心脏再同步治疗(CRT)。 CRT 通常用于治疗心力衰竭,但 30% 的患者对治疗没有反应,因此不必要地接受侵入性且危险的手术。我们的目标是设计生物标志物来区分对 CRT 产生反应的患者和对 CRT 没有反应的患者。第二个应用是研究遗传变异对心脏运动模式的影响。大量心血管疾病是遗传性的。在其中一些疾病中,例如左心室肥厚,许多人在发生心力衰竭之前没有表现出任何可检测到的症状。因此,人们对发现这些条件背后的机制非常感兴趣。我们的目标是设计生物标志物来帮助我们了解遗传学和心力衰竭之间的联系。这种理解将有可能改善对具有心力衰竭遗传风险的患者的筛查和诊断。该项目非常新颖,具有重大的潜在影响。除了上面提到的两个临床范例应用之外,如果成功的话,类似的技术也可以应用于其他心血管疾病,从而改善多种心脏病的诊断和治疗。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of passive and active properties in the human heart using 3D tagged MRI.
  • DOI:
    10.1007/s10237-015-0748-z
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Asner, Liya;Hadjicharalambous, Myrianthi;Chabiniok, Radomir;Peresutti, Devis;Sammut, Eva;Wong, James;Carr-White, Gerald;Chowienczyk, Philip;Lee, Jack;King, Andrew;Smith, Nicolas;Razavi, Reza;Nordsletten, David
  • 通讯作者:
    Nordsletten, David
Registration of Multiview Echocardiography Sequences Using a Subspace Error Metric
使用子空间误差度量注册多视图超声心动图序列
Hollow Gradient-Structured Iron-Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption.
用于增强电磁波吸收的空心梯度结构铁锚碳纳米球。
  • DOI:
    10.1007/978-3-319-52718-5_7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    26.6
  • 作者:
    Wu C
  • 通讯作者:
    Wu C
Towards Left Ventricular Scar Localisation Using Local Motion Descriptors
  • DOI:
    10.1007/978-3-319-28712-6_4
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Peressutti;Wenjia Bai;W. Shi;C. Tobon-Gomez;T. Jackson;M. Sohal;C. Rinaldi;D. Rueckert;A. King
  • 通讯作者:
    D. Peressutti;Wenjia Bai;W. Shi;C. Tobon-Gomez;T. Jackson;M. Sohal;C. Rinaldi;D. Rueckert;A. King
Prospective Identification of CRT Super Responders Using a Motion Atlas and Random Projection Ensemble Learning
使用运动图集和随机投影集成学习对 CRT 超级响应者进行前瞻性识别
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peressutti D
  • 通讯作者:
    Peressutti D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew King其他文献

Cementochronology using synchrotron radiation tomography to determine age at death and developmental rate in the holotype of Homo luzonensis
使用同步辐射断层扫描的牙骨质年代学确定吕宋人正型标本的死亡年龄和发育率
  • DOI:
    10.1101/2023.02.13.528294
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. H. van Heteren;Andrew King;F. Berenguer;A. Mijares;F. Détroit
  • 通讯作者:
    F. Détroit
Defining predictors of responsiveness to advanced therapies in Crohn’s disease and ulcerative colitis: protocol for the IBD-RESPONSE and nested CD-metaRESPONSE prospective, multicentre, observational cohort study in precision medicine
定义克罗恩病和溃疡性结肠炎先进疗法反应性的预测因子:精准医学中 IBD-RESPONSE 和嵌套 CD-metaRESPONSE 前瞻性、多中心、观察性队列研究方案
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Nicola J Wyatt;Hannah Watson;Carl A. Anderson;Nicholas A Kennedy;T. Raine;Tariq Ahmad;Dean Allerton;Michelle Bardgett;Emma Clark;Dawn Clewes;Cristina Cotobal Martin;Mary Doona;Jennifer A Doyle;Katherine Frith;H. Hancock;Ailsa Hart;Victoria Hildreth;Peter M. Irving;Sameena Iqbal;Ciara A Kennedy;Andrew King;Sarah Lawrence;C. W. Lees;Robert Lees;L. Letchford;Trevor Liddle;James O Lindsay;R. Maier;John C. Mansfield;Julian R Marchesi;Naomi McGregor;R. McIntyre;Jasmin Ostermayer;Tolulope Osunnuyi;Nick Powell;N. Prescott;Jack Satsangi;Shriya Sharma;Tara Shrestha;A. Speight;Michelle Strickland;J. Wason;K. Whelan;Ruth C Wood;G. Young;Xinyue Zhang;M. Parkes;Christopher J. Stewart;L. Jostins;Christopher A. Lamb
  • 通讯作者:
    Christopher A. Lamb
Tactile sensing array based on forming and detecting an optical image
基于形成和检测光学图像的触觉传感阵列
  • DOI:
    10.1016/0250-6874(85)80024-x
  • 发表时间:
    1985
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew King;R. White
  • 通讯作者:
    R. White
Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: implications for early sponge evolution
志留纪海绵中三维保存的软组织和钙质六聚体:对早期海绵进化的影响
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    A. Nadhira;M. Sutton;J. Botting;L. Muir;P. Guériau;Andrew King;D. Briggs;D. Siveter;D. Siveter
  • 通讯作者:
    D. Siveter
Reply: Atherosclerosis and vascular cognitive impairment neuropathological guideline.
答复:动脉粥样硬化与血管性认知障碍神经病理学指南。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Skrobot;J. Attems;M. Esiri;T. Hortobágyi;J. Ironside;R. Kalaria;Andrew King;G. A. Lammie;D. Mann;J. Neal;Y. Ben;P. G. Kehoe;S. Love
  • 通讯作者:
    S. Love

Andrew King的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew King', 18)}}的其他基金

Open Access Block Award 2024 - Wellcome Trust Sanger Institute
2024 年开放访问区块奖 - Wellcome Trust Sanger Institute
  • 批准号:
    EP/Z532253/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - Wellcome Trust Sanger Institute
2023 年开放访问区块奖 - Wellcome Trust Sanger Institute
  • 批准号:
    EP/Y530001/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Efficient and Robust Assessment of Cardiovascular Disease Using Machine Learning and Ultrasound Imaging
利用机器学习和超声成像对心血管疾病进行高效、稳健的评估
  • 批准号:
    EP/R005516/1
  • 财政年份:
    2018
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Astrophysics Research at the University of Leicester
莱斯特大学的天体物理学研究
  • 批准号:
    ST/N000757/1
  • 财政年份:
    2016
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
PET-MR Motion Correction Based Purely on Routine Clinical Scans
纯粹基于常规临床扫描的 PET-MR 运动校正
  • 批准号:
    EP/M009319/1
  • 财政年份:
    2015
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Older Lesbian, Gay, Bisexual and Trans People: Minding the Knowledge Gaps
老年女同性恋、男同性恋、双性恋和变性人:注意知识差距
  • 批准号:
    ES/J022454/1
  • 财政年份:
    2013
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Does diversity deliver? How variation in individual knowledge and behavioural traits impact on the performance of animal groups
多样性能带来好处吗?
  • 批准号:
    NE/H016600/3
  • 财政年份:
    2012
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Fellowship
Does diversity deliver? How variation in individual knowledge and behavioural traits impact on the performance of animal groups
多样性能带来好处吗?
  • 批准号:
    NE/H016600/1
  • 财政年份:
    2011
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Fellowship
Does diversity deliver? How variation in individual knowledge and behavioural traits impact on the performance of animal groups
多样性能带来好处吗?
  • 批准号:
    NE/H016600/2
  • 财政年份:
    2011
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Fellowship
SBIR Phase I: Minimum Quantity Lubrication Delivered by Supercritical Carbon Dioxide for Forming Applications
SBIR 第一阶段:超临界二氧化碳为成型应用提供微量润滑
  • 批准号:
    0944814
  • 财政年份:
    2010
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant

相似国自然基金

基于可解释机器学习的科学知识角色转变预测研究
  • 批准号:
    72304108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
精神分裂症阴性症状经颅磁刺激治疗效应遗传影像学机器学习预测模型研究
  • 批准号:
    82371510
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习的蚀变矿物勘查方法与应用研究:以西藏岗讲矿床为例
  • 批准号:
    42363009
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于融合物理知识机器学习方法的圆柱浮式阵列水动力特性评估初探
  • 批准号:
    12302318
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习方法的土壤多孔介质中EPFRs环境行为与生态毒性研究
  • 批准号:
    42377385
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
  • 批准号:
    2307504
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
  • 批准号:
    10100493
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Collaborative R&D
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
  • 批准号:
    LP230100351
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Linkage Projects
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了