A Smart Automated TEM Facility for Large Scale Analysis of Atomic Structure and Chemistry
用于大规模原子结构和化学分析的智能自动化 TEM 设备
基本信息
- 批准号:EP/X041204/1
- 负责人:
- 金额:$ 746.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Advanced materials lie at the heart of a huge number of key modern technologies, from aerospace and automotive industries, to semiconductors through to surgical implants. The transmission electron microscope (TEM) is a key enabling technology for advanced material research because it offers two important pieces of atomic information: firstly the location of atoms can be determined from studies of elastic scattering of electrons by the sample, and secondly the chemical composition of atomic sites within the materials structure can be recovered from spectroscopic studies of the inelastic transfer of energy to the sample (either from direct energy loss or by the detection of characteristic X-rays). These two pieces of information underpin a huge research area exploring the relationship between materials microscopic structure and the macroscopic properties it exhibits. With the drive towards nanotechnologies and quantum devices the ability to discover the most precise understanding of individual atoms is an essential capability for facilities supporting research of advanced materials.The aim of the project is to develop, for the first time, an analytical TEM that not only offers cutting edge spectroscopy performance but which also is designed with artificial intelligence and automated workflows at its core. The first goal will be achieved through the incorporation of the latest generation of X-ray detectors and spectrometers to provide order of magnitude improvements in chemical sensitivity and precision. This capability is essential for the move to studying devices as small as a single atomic defect as well as for efficient analysis of large areas at atomic resolution. To achieve artificial intelligence (AI)-assisted experiments the project will tackle a number of technical challenges:i. Computer control of the TEM will be developed, allowing the computer to automatically adjust the sample stage and beam to address specific regions of interest and perform auto-tuning the experimental parameters to achieve detailed high resolution imaging and diffraction based analysis of nanometric regions without the need for continuous operator interaction.ii. The mechanism to identify regions of interest will utilise the full range of machine learning (ML) approaches to segment lower resolution data, which might come from fast large-area scanning in the TEM or be the result of ex-situ analysis by optical imaging, scanning probe microscopies, scanning electron microscopy or optical approaches to name but a few. iii AI training will allow the microscope control computer to build functional relationships between experimental results in the same way a human operator does, allowing faster and more systematic identification of novel features.Our proposed new smart automated TEM (AutomaTEM) offers the opportunity to gain at least an order of magnitude increase in the volume of data that is readily accessible through automated workflow analysis. Features of interest will be determined either through user-defined parameters or through the AI identification of significant features in the collective data. This will allow meaningful statistics to be gathered about the size, shape, atomic structure, composition, electronic behaviour of potentially hundreds or thousands of regions in a given sample. This in turn will enable more complete understanding of nanostructure heterogeneity and structure-property relationships in materials.
先进材料是大量关键现代技术的核心,从航空航天和汽车工业到半导体再到外科植入物。透射电子显微镜 (TEM) 是先进材料研究的一项关键技术,因为它提供了两项重要的原子信息:首先,可以通过研究样品的电子弹性散射来确定原子的位置,其次可以确定化学成分材料结构内的原子位点可以通过对样品能量非弹性转移的光谱研究(通过直接能量损失或通过特征 X 射线的检测)来恢复。这两条信息支撑了一个巨大的研究领域,探索材料的微观结构与其所表现出的宏观特性之间的关系。随着纳米技术和量子器件的发展,对单个原子进行最精确理解的能力是支持先进材料研究的设施的一项基本能力。该项目的目的是首次开发一种分析 TEM,不仅提供尖端的光谱性能,而且其设计也以人工智能和自动化工作流程为核心。第一个目标将通过结合最新一代的 X 射线探测器和光谱仪来实现,以实现化学灵敏度和精度的数量级改进。这种能力对于研究小至单个原子缺陷的设备以及以原子分辨率对大面积进行有效分析至关重要。为了实现人工智能(AI)辅助实验,该项目将解决许多技术挑战:i。将开发 TEM 的计算机控制,允许计算机自动调整样品台和光束以处理特定的感兴趣区域,并自动调整实验参数,以实现详细的高分辨率成像和基于衍射的纳米区域分析,而无需用于持续的操作员交互。识别感兴趣区域的机制将利用全方位的机器学习 (ML) 方法来分割较低分辨率的数据,这些数据可能来自 TEM 中的快速大面积扫描,也可能是光学成像异位分析的结果,扫描探针显微镜、扫描电子显微镜或光学方法仅举几例。 iii 人工智能训练将使显微镜控制计算机能够像人类操作员一样在实验结果之间建立函数关系,从而更快、更系统地识别新特征。我们提出的新型智能自动化 TEM (AutomaTEM) 提供了获得以下结果的机会:通过自动化工作流程分析可以轻松访问的数据量至少增加一个数量级。感兴趣的特征将通过用户定义的参数或通过人工智能识别集体数据中的重要特征来确定。这将允许收集有关给定样本中潜在的数百或数千个区域的大小、形状、原子结构、成分、电子行为的有意义的统计数据。这反过来又将使人们能够更全面地理解材料中的纳米结构异质性和结构-性能关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Haigh其他文献
Carrier density tuning in CuS nanoparticles and thin films by Zn dopingviaion exchange
- DOI:
10.1039/d3nr00139c - 发表时间:
2023-01 - 期刊:
- 影响因子:6.7
- 作者:
Amaresh Shukla;Shouqi Shao;Sadie Carter-Searjeant;Sarah Haigh;David Richards;Mark Green;Anatoly V. Zayats - 通讯作者:
Anatoly V. Zayats
Core-shell-shell cytocompatible polymer dot-based particles with near-infrared emission and enhanced dispersion stability.
核-壳-壳细胞相容性聚合物点状颗粒,具有近红外发射和增强的分散稳定性。
- DOI:
10.1039/c8cc04310h - 发表时间:
2018-08-16 - 期刊:
- 影响因子:4.9
- 作者:
Hannah R Shanks;Mingning Zhu;Amir H. Milani;J. Turton;Sarah Haigh;N. Hodson;D. Adlam;J. Hoyl;T. Freemont;B. Saunders - 通讯作者:
B. Saunders
Core–shell–shell cytocompatible polymer dot-based particles with near-infrared emission and enhanced dispersion stability
- DOI:
10.1039/c8cc04310h - 发表时间:
2018-07 - 期刊:
- 影响因子:4.9
- 作者:
Hannah R. Shanks;Mingning Zhu;Amir H. Milani;James Turton;Sarah Haigh;Nigel W. Hodson;Daman Adlam;Judith Hoyland;Tony Freemont;Brian R. Saunders - 通讯作者:
Brian R. Saunders
Hydrocarbon contamination in angström-scale channels
- DOI:
10.1039/d1nr00001b - 发表时间:
2021-04 - 期刊:
- 影响因子:6.7
- 作者:
Ravalika Sajja;Yi You;Rongrong Qi;Solleti Goutham;Ankit Bhardwaj;Alexander Rakowski;Sarah Haigh;Ashok Keerthi;Boya Radha - 通讯作者:
Boya Radha
Pattern glare sensitivity distinguishes subclinical autism and schizotypy.
图案眩光敏感性区分亚临床自闭症和精神分裂症。
- DOI:
10.1080/13546805.2024.2335103 - 发表时间:
2024-03-29 - 期刊:
- 影响因子:1.7
- 作者:
Wendy A Torrens;Jenna N Pablo;Marian E. Berryhill;Sarah Haigh - 通讯作者:
Sarah Haigh
Sarah Haigh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Haigh', 18)}}的其他基金
Atomic imaging of dynamic behaviour at solid-liquid interfaces
固液界面动态行为的原子成像
- 批准号:
EP/Y024303/1 - 财政年份:2024
- 资助金额:
$ 746.34万 - 项目类别:
Research Grant
Correlative Mapping of Crystal Orientation and Chemistry at the Nanoscale
纳米尺度晶体取向和化学的相关映射
- 批准号:
EP/S021531/1 - 财政年份:2019
- 资助金额:
$ 746.34万 - 项目类别:
Research Grant
Quasi-ambient bonding to enable cost-effective high temperature Pb-free solder interconnects
准环境键合可实现经济高效的高温无铅焊料互连
- 批准号:
EP/R031711/1 - 财政年份:2018
- 资助金额:
$ 746.34万 - 项目类别:
Research Grant
相似国自然基金
全自动化运行城市轨道交通乘务计划优化问题研究
- 批准号:72301192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单浆细胞筛选新技术的自动化抗体发现平台构建及工作机制研究
- 批准号:32301266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模型-自动化微流控芯片技术的三代EGFR-TKI耐药后个体化药物高效筛选平台的构建及应用
- 批准号:82304435
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开发2’-氟阿拉伯糖核酸的自动化Sanger测序新方法
- 批准号:22307058
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热化学非平衡下高马赫数超燃冲压发动机热力分析及其流道自动化设计
- 批准号:52306006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Optoelectronic lab-on-a-chip technology for high content automated multiparametric physiological analyses of live cells
职业:用于活细胞高内涵自动化多参数生理分析的光电芯片实验室技术
- 批准号:
2339030 - 财政年份:2024
- 资助金额:
$ 746.34万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 746.34万 - 项目类别:
Standard Grant
Re4Rail: AI and digital twin-based automated technology to real-time repair, reuse, recycle and repurpose railway granular media
Re4Rail:基于人工智能和数字孪生的自动化技术,可实时修复、再利用、回收和重新利用铁路颗粒介质
- 批准号:
EP/Y015401/1 - 财政年份:2024
- 资助金额:
$ 746.34万 - 项目类别:
Fellowship
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 746.34万 - 项目类别:
Studentship
ARC Training Centre for Automated Vehicles in Rural and Remote Regions
ARC农村和偏远地区自动驾驶汽车培训中心
- 批准号:
IC230100001 - 财政年份:2024
- 资助金额:
$ 746.34万 - 项目类别:
Industrial Transformation Training Centres