TOWARDS BIOLOGICALLY-INSPIRED ACTIVE-COMPLIANT-WING MICRO-AIR-VEHICLES

迈向仿生主动翼微型飞行器

基本信息

  • 批准号:
    EP/J001465/1
  • 负责人:
  • 金额:
    $ 31.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Natural fliers achieve exceptional aerodynamics by continuous adjustments on their geometry through a mix of dynamic wing compliance and distributed sensing and actuation. This enables them to routinely perform a wide range of manoeuvres including rapid turns, rolls, dives, and climbs with seeming ease. Despite a good knowledge of the physiology of bats and birds, engineering applications with active dynamic wing compliance capability are so far few and far-between. Recent advances in development of electroactive materials together with high-fidelity numerical/experimental methods provide a foundation to develop biologically-inspired dynamically-active wings that can achieve "on-demand" aerodynamic performance. However, this requires first to develop a thorough understanding of the dynamic coupling between the electro-mechanical structure of the membrane wing and its unsteady aerodynamics. In this collaborative initiative between the University of Southampton and Imperial College London, we will develop an integrated research programme that carries out high-fidelity experiments and computations to achieve a fundamental understanding of the dynamics of aero-electro-mechanical coupling in dynamically-actuated compliant wings. The goal is to utilise our understanding and devise control strategies that use integral actuation schemes to improve aerodynamic performance of membrane wings. The long-term goal of this project is to enable the use of soft robotics technology to build integrally-actuated wings for Micro Air Vehicles (MAV) that mimic the dynamic shape control capabilities of natural flyers.
天生的飞行员通过动态机翼柔顺性和分布式传感与驱动的结合不断调整其几何形状,从而实现卓越的空气动力学性能。这使得它们能够日常地执行各种动作,包括看似轻松的快速转弯、翻滚、俯冲和爬升。尽管人们对蝙蝠和鸟类的生理学有了很好的了解,但迄今为止,具有主动动态机翼柔顺能力的工程应用仍然很少。电活性材料开发的最新进展以及高保真数值/实验方法为开发可实现“按需”空气动力学性能的受生物启发的动态活性机翼奠定了基础。然而,这首先需要对膜翼的机电结构与其非定常空气动力学之间的动态耦合有透彻的了解。在南安普顿大学和伦敦帝国理工学院的这项合作计划中,我们将开发一个综合研究项目,进行高保真实验和计算,以基本了解动态驱动顺应性中航空机电耦合的动力学。翅膀。目标是利用我们的理解并设计控制策略,使用积分驱动方案来提高膜翼的空气动力学性能。该项目的长期目标是利用软机器人技术为微型飞行器(MAV)构建整体驱动机翼,模仿自然飞行器的动态形状控制能力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aspect-Ratio Effects on Aeromechanics of Membrane Wings at Moderate Reynolds Numbers
中等雷诺数下展弦比对膜翼空气力学的影响
  • DOI:
    10.2514/1.j053522
  • 发表时间:
    2015-02-13
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    R. Bleischwitz;R. Kat;B. Ganapathisubramani
  • 通讯作者:
    B. Ganapathisubramani
Aerodynamic Step Input Response of Electro-Active Membrane Wings
电活性膜翼的气动阶跃输入响应
  • DOI:
    http://dx.10.2514/6.2017-0056
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barbu I
  • 通讯作者:
    Barbu I
Leading- and trailing-edge effects on the aeromechanics of membrane aerofoils
前缘和后缘对膜翼型空气力学的影响
  • DOI:
    10.1016/j.jfluidstructs.2013.01.005
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    S. Arbós;B. Ganapathisubramani;R. Palacios
  • 通讯作者:
    R. Palacios
Aerodynamic Performance of Electro-Active Acrylic Membrane Wings
电活性丙烯酸薄膜翼的气动性能
  • DOI:
    10.2514/1.j056241
  • 发表时间:
    2018-10-08
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    A. Barbu;R. Kat;B. Ganapathisubramani
  • 通讯作者:
    B. Ganapathisubramani
Aeromechanics of membrane and rigid wings in and out of ground-effect at moderate Reynolds numbers
中等雷诺数下地面效应中薄膜和刚性机翼的空气力学
  • DOI:
    10.1016/j.jfluidstructs.2016.02.005
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    R. Bleischwitz;R. Kat;B. Ganapathisubramani
  • 通讯作者:
    B. Ganapathisubramani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bharathram Ganapathisubramani其他文献

Volumetric flow characterisation of a rectangular orifice impinging synthetic jet with single-camera light-field PIV
使用单相机光场 PIV 来表征矩形孔口撞击合成射流的体积流量
  • DOI:
    10.1016/j.expthermflusci.2020.110327
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Zhou Zhao;Junfei Ding;Shengxian Shi;Rene Kaufmann;Bharathram Ganapathisubramani
  • 通讯作者:
    Bharathram Ganapathisubramani

Bharathram Ganapathisubramani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bharathram Ganapathisubramani', 18)}}的其他基金

Turbulent flows over rough-walls under the influence of streamwise pressure gradients
在流向压力梯度的影响下,粗糙壁上的湍流
  • 批准号:
    EP/W026090/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
ary currents in turbulent flows over rough wallsSecond
湍流流过粗糙的墙壁第二
  • 批准号:
    EP/V00199X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Aerodynamics and aeroacoustics of turbulent flows over and past permeable rough surfaces
穿过可渗透粗糙表面的湍流的空气动力学和气动声学
  • 批准号:
    EP/S013296/1
  • 财政年份:
    2019
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Understanding and exploiting non-equilibrium effects on turbulent boundary layers: Towards realisable drag reduction strategies
理解和利用湍流边界层的非平衡效应:实现可实现的减阻策略
  • 批准号:
    EP/R034370/1
  • 财政年份:
    2018
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Effect of Separation and Stall on Aerofoil Noise
分离和失速对机翼噪声的影响
  • 批准号:
    EP/R010900/1
  • 财政年份:
    2018
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
CBET-EPSRC: Turbulent flows over multiscale heterogeneous surfaces
CBET-EPSRC:多尺度异质表面上的湍流
  • 批准号:
    EP/P021476/1
  • 财政年份:
    2017
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Surface-specific Moody-diagrams: A new paradigm to predict drag penalty of realistic rough surfaces with applications to maritime transport
特定于表面的穆迪图:预测现实粗糙表面阻力损失的新范式及其在海上运输中的应用
  • 批准号:
    EP/P009638/1
  • 财政年份:
    2017
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Towards drag reduction strategies for high Reynolds number wall-turbulence
针对高雷诺数壁湍流的减阻策略
  • 批准号:
    EP/L006383/1
  • 财政年份:
    2014
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Scale interactions in wall turbulence: Old challenges tackled with new perspectives
壁湍流中的尺度相互作用:用新视角解决旧挑战
  • 批准号:
    EP/I037717/1
  • 财政年份:
    2012
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Is Fine-Scale Turbulence Universal?
小尺度湍流是普遍存在的吗?
  • 批准号:
    EP/I004785/1
  • 财政年份:
    2011
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant

相似国自然基金

细胞分子网络混合尺度动力学理论及其在系统生物学上的应用
  • 批准号:
    31170796
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
流感病毒相变异的分子生物学基础及在流行病学上的意义
  • 批准号:
    39670037
  • 批准年份:
    1996
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
  • 批准号:
    2325863
  • 财政年份:
    2023
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Continuing Grant
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
  • 批准号:
    2047570
  • 财政年份:
    2021
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Continuing Grant
Towards Biologically-inspired active-compliant-wing micro-air-vehicles
迈向仿生主动顺应翼微型飞行器
  • 批准号:
    EP/J002070/1
  • 财政年份:
    2012
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Research Grant
Tailoring cementitious materials with genetically, engineered microbial exopolysaccharides, a biologically inspired approach towards high-performance construction materials
用基因工程微生物胞外多糖定制水泥材料,这是一种受生物学启发的高性能建筑材料方法
  • 批准号:
    210721357
  • 财政年份:
    2012
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Priority Programmes
Towards Biologically Inspired Neural Controllers for Intelligent Robots : A BMI Approach
面向智能机器人的仿生神经控制器:BMI 方法
  • 批准号:
    21700220
  • 财政年份:
    2009
  • 资助金额:
    $ 31.68万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了